ICA3PP 2011

Finding a Hamiltonian Cycle in a Hierarchical Dual-Net with Base Network of p-Ary q-Cube

Yamin Li, Department of Computer Science, Hosei University, yamin@hosei.ac.jp Shietung Peng, Department of Computer Science, Hosei University, speng@hosei.ac.jp Wanming Chu, Department of Computer Hardware, University of Aizu, w-chu@u-aizu.ac.jp

ICA3PP2011, Melbourne, Australia – p.1/30

Contents

Hierarchical Dual-Net (HDN)

- Why
- What

Finding a Hamiltonian Cycle in an HDN How

- The modern high-performance supercomputers consist of hundreds of thousands of CPUs
- In the near future, the number of CPUs in supercomputers will reach several millions
- How to connect these extremely large number of CPUs is an important issue for achieving high performance of the supercomputers
- A "good" interconnection network should use a small number of links and meanwhile keep the diameter as shorter as possible
- The symmetric structure and efficient routing should also be considered

Ring Too simple, long diameter Complete graph Too complex, expensive 3D Torus Long diameter in a large-scale system Hypercubes The number of links increases logarithmically Tree / Fat Tree Not symmetric

The Hierarchical Dual-Net (HDN)

- Use a small popurlar IN as base network
- Hierarchical structure
- Small and flexible node-degree
- Short diameter
- Efficient routing and broadcasting
- Flexible scale (small very large systems)

Building an HDN(B,i,S) from HDN(B,i-1,S)

 $\begin{array}{l} \mathsf{HDN}(\mathsf{B},\mathsf{k},\mathsf{S}) \\ \hline \mathsf{B} \text{ is a base network}; \ \mathsf{k} \ \mathsf{is the } \mathit{level} \ \mathsf{of the HDN}; \\ \mathsf{S} = \{\mathsf{s}_1,\mathsf{s}_2,\ldots,\mathsf{s}_k\} \ \mathsf{where } \mathsf{s}_{\mathsf{i}} \ \mathsf{is the number of nodes in} \\ \mathsf{a} \ \mathit{super-node} \ \mathsf{at the level i.} \end{array}$

An HDN(B,1,S) with $s_1 = 2$ (Base = 2-Cube)

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.7/30

An HDN(B,2,S) with $s_1 = 2$ and $s_2 = 4$

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia - p.8/30

- Select a symmetric product graph as a base network
- For example,
 - hypercube,
 - torus, or
 - p-ary q-cube

a 5-ary 2-cube

C Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.9/30

The Number of Nodes in HDN(B,k,S)

Suppose that the base network is a 2 * 3 * 5 torus

Degree = 7

k = 1	$s_1 = 1$	$s_1 = 2$	$s_1 = 3$	$s_1 = 5$	$s_1 = 6$	$s_1 = 10$	$s_1 = 15$	$s_1 = 30$
	1,800	900	600	360	300	180	120	60
Degree	= 8							
k = 2	$s_2 = 1$	$s_2 = 2$	$s_2 = 3$	$s_2 = 5$	s ₂ = 6	$s_2 = 10$	$s_2 = 15$	$s_2 = 30$
$s_1 = 1$	6,480,000	3,240,000	2,160,000	1,296,000	1,080,000	648,000	432,000	216,000
$s_1 = 2$	1,620,000	810,000	540,000	324,000	270,000	162,000	108,000	54,000
$s_1 = 3$	720,000	360,000	240,000	144,000	120,000	72,000	48,000	24,000
$s_1 = 5$	259,200	129,600	86,400	51,840	43,200	25,920	17,280	8,640
$s_1 = 6$	180,000	90,000	60,000	36,000	30,000	18,000	12,000	6,000
$s_1 = 10$	64,800	32,400	21,600	12,960	10,800	6,480	4,320	2,160
$s_1 = 15$	28,800	14,400	9,600	5,760	4,800	2,880	1,920	960
$s_1 = 30$	7,200	3,600	2,400	1,440	1,200	720	480	240

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.10/30

Topological Properties

Network	The number of nodes (N)	Degree (d)
3D Torus	X * Y * Z	6
n-cube	2 ⁿ	n
CCC(n)	n * 2 ⁿ	3
Dual-Cube(n)	2 ²ⁿ⁻¹	n
RDN(m,k)	$(2m)^{2^{k}}/2$	$d_0 + k$
HDN(B, k, S)	$(2 B)^{2^k}/(2\prod_{i=1}^k s_i)$	$d_0 + k$

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.11/30

Topological Properties

Network	Diameter (D)			
3D Torus	(x + y + z)/2			
n-cube	n			
CCC(n)	2n + ⌊n/2⌋ − 2			
Dual-Cube(n)	2n			
RDN(m,k)	$2^{k} * D_0 + 2^{k+1} - 2$			
HDN(B, k, S)	$2^{k}(D(B) - \sum_{j=0}^{k-1} 2^{j}(D(SN^{k-j})) + 2^{k+1} - 2$			

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.12/30

Weighted Cost Ratio

Define Weighted Cost Ratio :

$$CR_w(G) = \frac{w_1 \times d(G) + w_2 \times D(G)}{\log_2 |(G)|}$$

B: 2 * 3 * 5 torus; $w_1 = w_2 = 50\%$

Network	Ν	d	D	CR_w
10-cube	1,024	10	10	1.00
3D-Tori(10)	1,000	6	15	1.05
HDN(B, 1, (1))	1,800	7	10	0.79
HDN(B, 1, (2))	900	7	9	0.82
HDN(B, 1, (3))	600	7	9	0.87

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.13/30

Weighted Cost Ratio

Define Weighted Cost Ratio :

$$CR_w(G) = \frac{w_1 \times d(G) + w_2 \times D(G)}{\log_2 |(G)|}$$

B: 2 * 3 * 5 torus; $w_1 = w_2 = 50\%$

Network	N	d	D	CR_w
19-cube	524,288	19	19	1.00
3D-Tori(80)	512,000	6	120	3.32
HDN(B, 2, (2, 2))	810,000	8	19	0.69
HDN(B, 2, (2, 5))	324,000	8	18	0.71
HDN(B, 2, (5, 2))	129,600	8	17	0.74

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.14/30

Hamiltonian Cycle Embedding

- Linear array and ring are two fundamental networks and many algorithms were designed based on linear array and ring
- Thus embedding linear array or ring in networks is important for emulating those algorithms
- A Hamiltonian cycle of an undirected graph G is a simple cycle that contains every node in G exactly once
- A Hamiltonian path in a graph is a simple path that visits every node exactly once
- A graph that contains a Hamiltonian cycle is said to be Hamiltonian

- A p-ary q-cube connects p^q nodes
 - p: the number of nodes per dimension
 - q: the network dimension
- Each node can be identified by a q-digit radix-p address (a₀, a₁, ..., a_i, ..., a_{q-1})
- There is a link connecting node A with address $(a_0, a_1, \ldots, a_{q-1})$ and node B with address $(b_0, b_1, \ldots, b_{q-1})$ if and only if there exists i $(0 \le i \le q 1)$ such that $a_i = (b_i + 1)\%$ p and $a_j = b_j$ for $0 \le j \le q 1$ and $i \ne j$
- For examples, a 4-ary 2-cube is a 4 × 4 torus and a 2-ary 4-cube is a 4-cube

A Hamiltonian cycle in a 5-ary 2-cube

(a) 5-ary 2-cube

(b) A cycle

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.17/30

A Hamiltonian cycle in a 5-ary 3-cube

Lemma: There is a Hamiltonian cycle in a p-ary qcube

C Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.18/30

Building A Hamiltonian Cycle in Level 1

- There are 2n₁ clusters and each cluster contains n₁ super-nodes
- Building a virtual Hamiltonian cycle (VHC)
 - An HVC connects all 2n₁ clusters
 - Two super-nodes in a cluster are in the VHC
- Including all super-nodes
 - Replacing the two super-nodes with the Hamiltonian path
- Renaming super-nodes
- Including all nodes
 - Expanding from super-node level to node level

A Hamiltonian Cycle for Super-Nodes

(a) A virtual Hamiltonian cycle connecting all clusters

(b) Including and renaming all super-nodes

C Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.20/30

A Hamiltonian Cycle for All Nodes in HDN(B,1,(4))

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.21/30

Building A Hamiltonian Cycle in Level 2

- Build an VHC connecting all clusters at level 2
- Insert all super-nodes to the cycle
- Expand super-nodes to nodes
 - There is a problem: some nodes cannot be included in super-node i
 - To solve this problem, we route in super-node i first

Lemma: For an HDN with the base network of p-ary q-cube, given any node $u \in$ renamed super-node i in a cluster, for i = 0, 1, ..., n - 1, there is a path $u \rightarrow v$ containing all of the nodes in the cluster with $v \in$ renamed super-node (i + 1)%n

Some Nodes in Super-Node i Can Not Be Included

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.23/30

Routing in Super-Node i First

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.24/30

Part of Hamiltonian cycle at level 2

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.25/30

A Hamiltonian cycle in HDN(B,2,(4,4))

C Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.26/30

A Hamiltonian cycle in HDN(B,2,(4,16))

C Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.27/30

Algorithm for Finding a Hamiltonian Cycle in HDN

Algorithm 1: HDN HC(HDN(B, k, S)) begin $pc_0 =$ Hamiltonian cycle of base network; for $i \leftarrow i$ to k do /* k levels */ group nodes to super-nodes based on s_i; $n_i =$ the number of super-nodes in HDN(B, k - 1, S); based on the cycle build at level j - 1, rename the super-node_id in HDN(B, j - 1, S) such that super-nodes i and (i + 1)%n_i are neighbors; u = 0; /* starting node_id in a super-node */ for $i \leftarrow 0$ to $n_i - 1$ do /* n_i clusters of each class */ /* build a Hamiltonian path in cluster i of class 0 */ /* based on j — 1 level Hamiltonian cycle pc_{i-1} */ $hp_i^0 = (0, i, i, u) \rightarrow (0, i, (i + 1)\%n_j, v);$ /* build a Hamiltonian path in cluster (i+1)%n_i of class 1 */ /* based on j - 1 level Hamiltonian cycle pc_{j-1} */ $hp_i^1 = (1, (i + 1)\%n_i, i, v) \rightarrow (0, i, (i + 1)\%n_i, w);$ /* end node id \rightarrow starting node id of next cluster */ u = w: endfor /* we get the j level Hamiltonian cycle pc_i */ $pc_i = \emptyset;$ for $i \leftarrow 0$ to $n_i - 1$ do /* n_i clusters of each class */ $pc_i = pc_i \cup hp_i^0 \cup hp_i^1;$ endfor endfor end

Conclusions

- The Hierarchical dual-net, HDN, has many attractive properties including
 - Small and flexible node-degree
 - Short diameter
 - Efficient routing and broadcasting
- We presented an algorithm for finding a Hamiltonian cycle in HDN with the base network of p-ary q-cube
- The HDN can be used as an efficient interconnection network of a supercomputer of the future generation

© Yamin Li, CIS, HOSEI UNIVERSITY

ICA3PP2011, Melbourne, Australia – p.30/30