
IEEE Computer Society Technical Committee on Computer Architecture Newsletter, Jun. 1996, pp.31–35

Using FPGA for Computer Architecture/Organization Education

Yamin Li and Wanming Chu

Computer Architecture Laboratory
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu, 965-80 Japan

yamin@u-aizu.ac.jp, w-chu@u-aizu.ac.jp

Abstract

In this paper, we introduce hardware exercises for Com-
puter Architecture/Organization Education at the Univer-
sity of Aizu, Japan. Particularly, we discuss a pipelined
RISC processor design and implementation on Xilinx FPGA
chip.

1. Courses for Computer Architecture / Orga-
nization Education

The courses concerning Computer Architecture/Orga-
nization Education [1] [2] for undergraduates at the Uni-
versity of Aizu include Computer Architecture, Computer
Organization I, and Computer Organization II. The Com-
puter Architecture and Computer Organization I focus on
the issues of uniprocessor computer architecture and orga-
nization. The Computer Organization II focuses on the is-
sues of parallel computer architecture and organization (ar-
ray processors and multiprocessor systems).

2. Laboratories for Computer Architecture /
Organization Education

The laboratories for these courses consist of software ex-
ercises and hardware exercises. In the software exercises,
we ask undergraduates to write some applications with as-
sembly language, to run them at architecture simulators, and
to evaluate the architectures and the applications.

In the hardware exercises, we ask undergraduates to de-
sign a simple non-pipelined processor, a pipelined RISC

processor, and a multiprocessor computer. All of the hard-
ware exercises are performed at Cadence environment for
schematic capture and functional simulation. The pipelined
processor design and the multiprocessor computer design
are implemented on Xilinx FPGA chips and measured with
Logic Analyzer.

The exercise courses are helpful to undergraduates not
only to understand the principle of Computer Architec-
ture/Organization and the operations of pipelined processor
and multiprocessors, but also to master the design method-
ologies and the use of measuring instruments.

We will discuss the pipelined processor design and im-
plementation on Xilinx FPGA chips in next section.

3. Laboratory Design with Cadence and Xilinx
Tools

In the University of Aizu, there are more than sixty
sets of exercise equipments for Computer Architec-
ture/Organization Education. One set consists of a SUN
workstation with installed Cadence/Xilinx design tools [3],
an evaluation board with mounted Xilinx xc4006PC84
FPGA chip [4] [5], and a Logic Analyzer.

We have developed a RISC pipelined processor (Aizup)
and implemented it on the Xilinx FPGA chip for the course
of Computer Organization I [10]. The Aizup processor
pipeline has four stages and deals with data dependency and
control dependency. Some techniques for performance op-
timization, such as data forwarding, delay branch, and in-
struction reorganization, can be demonstrated in the design.

The contents of the exercise include design of datapath

31

Table 1. Instruction set and pipeline operations

Instruction Format Operations IF DC EX WR

NOP No Operation IR←M[PC]
0000 00 00 PC←PC+1
ADD RD, RS RD←RD + RS IR←M[PC] A←RD C←A + B RD←C
0001 RD RS Update Z PC←PC+1 B←RS Z←((A + B)==0)
SUB RD, RS RD←RD− RS IR←M[PC] A←RD C←A − B RD←C
0010 RD RS Update Z PC←PC+1 B←RS Z←((A − B)==0)
OR RD, RS RD←RD or RS IR←M[PC] A←RD C←A or B RD←C
0011 RD RS Update Z PC←PC+1 B←RS Z←((A or B)==0)
AND RD, RS RD←RD and RS IR←M[PC] A←RD C←A and B RD←C
0100 RD RS Update Z PC←PC+1 B←RS Z←((A and B)==0)
XOR RD, RS RD←RD xor RS IR←M[PC] A←RD C←A xor B RD←C
0101 RD RS Update Z PC←PC+1 B←RS Z←((A xor B)==0)
MOV RD, RS RD←RS IR←M[PC] A←RD C←B RD←C
0110 RD RS Update Z PC←PC+1 B←RS Z←(B==0)
LD RD, RS RD←M[RS] IR←M[PC] A←RD C←M[B] RD←C
0111 RD RS PC←PC+1 B←RS
ST RD, RS M[RS]←RD IR←M[PC] A←RD M[B]←A
1000 RD RS PC←PC+1 B←RS
ADDI RD, n RD←RD + 000000n IR←M[PC] A←RD C←A + B RD←C
1001 RD n Update Z PC←PC+1 B←000000n Z←((A + B)==0)
SUBI RD, n RD←RD− 000000n IR←M[PC] A←RD C←A − B RD←C
1010 RD n Update Z PC←PC+1 B←000000n Z←((A − B)==0)
SR0L N R0←R0 or 0000N IR←M[PC] A←R0 C←A or B R0←C
1011 N Update Z PC←PC+1 B←0000N Z←((A or B)==0)
SR0H N R0←N0000 IR←M[PC] A←R0 C←B R0←C
1100 N Update Z PC←PC+1 B←N0000 Z←(B==0)
BZ N if (Z) IR←M[PC] if (Z)
1101 N PC←PC+(s)N PC←PC+1 PC←PC+(s)N
BNZ N if (!Z) IR←M[PC] if (!Z)
1110 N PC←PC+(s)N PC←PC+1 PC←PC+(s)N
BRA N PC←PC+(s)N IR←M[PC] PC←PC+(s)N
1111 N PC←PC+1

and control unit, circuit schematic, functional simulation,
netlist generation, pin assignment, placement and routing,
Intel mcs-format file generation, file download and FPGA
chip program, and measurement of the chip. Because the
undergraduates have mastered the use of Cadence in Logic
Circuit Design and Computer Architecture courses, they
can finish the exercise within one semester, say 45 hours.

3.1. Aizup Architecture

In order to be able to implement the pipelined processor
associated with instruction memory and data memory on a
single Xilinx xc4006 FPGA chip, we select the 8 bits as the
width of instructions and data. Most of the instructions have

two operands, one is a register operand (RD) and the other
is a register operand (RS) or an immediate. The operation
result is written back to RD. The four pipeline stages are
IF (Instruction Fetch), DC (DeCode and operand fetch), EX
(EXecution or memory access), and WB (Write Back).

Table 1 lists the instruction operation codes, the opera-
tions in each stage, and the immediate extensions. Some
registers are needed for the pipeline operations. They
are PC (Program Counter), IR (Instruction Register), A/B
(holding two source operands), and C (holding the result of
operations). There is also a single bit register, Z, for storing
the zero tag, that will be evaluated by conditional branch
instructions.

32

Figure 1. The top schematic of Aizup

33

3.2. Aizup Organization

Figure 1 shows the organization of Aizup. The major
cells include ALU, register file, adders, instruction memory,
data memory, decoder, pipeline registers, and multiplexors.
The four pipeline stages are marked in the left side of the
figure.

In Aizup, the register-to-register instructions perform
RD←RD op RS, and two bits are used for addressing the
register file. It means a 4×8 bits register file with two read
ports and a write port is needed. It can be implemented with
four 8-bit registers plus a pair of 4-to-1 multiplexors each 8
bits wide for read ports and a 2-to-4 decoder for write con-
trol.

For the data dependency, we designed a special data path
to solve this problem. A dependent detection block can de-
tect the dependencies (ADEPEN and BDEPEN). When a
data dependency is detected, the source data for ALU oper-
ation is passed from C via multiplexor, instead of from A or
B.

The dependency detection takes place in EX stage. In
our processor design, we move it to DC stage, and use
pipeline registers to transfer to EX stage. There are good
points of the movement. First, doing the detection in DC
stage will save the gates because some common logic can
be shared with other decode circuits. Second, the time re-
quired by EX stage will be shortened because the ADEPEN
and BDEPEN are available immediately at the beginning of
EX stage.

As for the control dependency, we adopt the delay branch
method. In our processor model, the branch target address
is evaluated in DC stage. It means that one delay cycle is
introduced and an additional adder is needed for address
evaluation. We can use this method to demonstrate the op-
timization by reorganizing the instruction codes.

3.3. Aizup Control Unit

The control unit generates all control signals for control-
ling datapath. We summarize the control signals in Aizup
as following.

1. IF stage

• BTAKEN (Branch Taken). If branch is taken,
BTAKEN should be high to select the branch tar-
get address for instruction fetching in the next
clock cycle.

2. DC stage

• AA<1:0> (A Address). It indicates the register
number of RD. RD is the destination register but
it is also the source 1 register (RD←RD op RS).
Most of the instructions put the number of RD in
a fixed position in the instruction format, but the
SR0L and SR0H instructions are special cases.
The number of RD is always 0 for these instruc-
tions.

• AB<1:0> (B Address). It indicates the register
number of RS. RS is the source 2 register. Most
of the instructions put the number of RS in a fixed
position in the instruction format, but some in-
structions put immediate in that position.

• IMMES (Immediate Selection). When the source
2 operand is an immediate, IMMES should be
high for selecting the immediate, not register
operand.

• IMM <7:0> (Immediate). It is an 8-bit imme-
diate. Based on instructions, it can be gen-
erated with different extension methods. The
IMM <7:0> is used not only for the source 2
operand of ALU operations, but also for the
calculation of branch target address. Generally
speaking, the IMM<7:0> does not belong to con-
trol unit, it belongs to datapath.

3. EX stage

• AOP<2:0> (ALU Operation Control). It can be
generated easily based on instructions.

• ADEPEN (A Dependent). It is the selection sig-
nal for ALU operand A. When it is high, the for-
warding data of register C is selected. Otherwise,
the data of register A is selected.

• BDEPEN (B Dependent). It is the selection sig-
nal for ALU operand B. When it is high, the for-
warding data of register C is selected. Otherwise,
the data of register B is selected.

• STORE (Store). It is the memory-write control
signal. When it is high, a memory-write happens.

• LOAD (Load). When LOAD is high, the register
C will be written with the loaded data from data
memory.

• ZRWRITE (Zero Register Write). When ZR-
WRITE is high, zero tag register will be updated.

4. WB stage

34

• AA<1:0> (A Address). It is the same signal as
AA<1:0> of DC stage. Here it is the number of
destination register only.

• REGWRITE (Register Write). It is the register-
write control signal. When it is high, the data of
register C will be written into register file.

All of the control signals are generated at DC stage. But
some of them are used in EX and WB stages. To cope with
this, the pipeline registers are used to put them to the corre-
sponding stages.

The processor circuits are designed with Xilinx XC4000
library. The functional simulation is done at Cadence envi-
ronment. By following Xilinx Design Flow, the bitstream
file is generated and translated to Intel mcs-format. The
translated file is transferred to evaluation board via RS-
232C. After we program the xc4006PC84 FPGA chip, the
Aizup can be measured with Logic Analyzer.

4. Discussion and Future Work

The University of Aizu attaches importance to exercise
classes for most courses, especially for the courses of Com-
puter Architecture/Organization Education. The time ratio
of lectures and exercises for the courses of Logic Circuit
Design, Computer Architecture, Computer Organization I,
and Computer Organization II is 1:2, i.e., one unit for lec-
ture and two units for exercise.

Most of the undergraduates have shown their interest in
the hardware exercise classes and the use of Cadence/Xilinx
design tools. Some undergraduates have joined research
projects and they can design and simulate the real circuitry
with various libraries.

The FPGA has shown its flexibility in rapid prototyping.
We can implement our design on the chip and verify it in
hours or a few days. And one more important feature of
FPGA is the re-programmability. This feature is more suit-
able for education purpose. We can implement and verify
various designs on the same chip.

The Aizup model that we designed and implemented
does not contain any floating-point instruction. We would
like to put the floating-point unit in the new version of
Aizup. We have designed a Multiple-Threaded Multiple-
Pipelined processor [8] [9] including floating-point unit
using Toshiba TC180/183E/C ASIC library [6] [7]. The
floating-point unit can perform addition, subtraction, mul-
tiplication, division, square root, and conversion between
integer and floating-point numbers. We are now investigat-
ing the possibility of implementation of the floating-point
unit on FPGA chips for advanced exercise course.

We are also investigating the use of external memory
modules so that we can demonstrate the external mem-
ory access and instruction/data cache operations. The new
Aizup will include integer unit, floating-point unit, instruc-
tion cache, data cache (with different structures and replace-
ment algorithms), and interface to system bus. According to
the experience on design and implementation of Aizup, we
believe that the circuitry of new Aizup will require more
than one Xilinx xc4006PC84 FPGA chip.

In a new evaluation board design, multiple FPGA chips
will be mounted on the board that is not only for the new
Aizup design but also for multiprocessor design for Com-
puter Organization II course. In this exercise course, we
will demonstrate multiprocessor computer. The exercise
will concern bus arbitration, cache coherence, and intercon-
nection networks.

References

[1] J. Hennessy and D. Patterson, Computer Architecture,
A Quantitative Approach, Morgan Kaufmann Publish-
ers, Inc., Second Edition, 1996.

[2] D. Patterson and J. Hennessy, Computer Organization
& Design: The Hardware/Software Interface, Morgan
Kaufmann Publishers, Inc., 1994.

[3] XACT Development System - XACT User Guide, Xil-
inx, April, 1994.

[4] The Programmable Logic Data Book. Xilinx, 1994.

[5] XACT Development System - XACT Libraries Guide,
Xilinx, April, 1994.

[6] Toshiba TC180C Series Cell Library, Vol. 1, Toshiba,
1993.

[7] Toshiba TC180C/E*TC183C/E Series Micro-cell Li-
brary, Toshiba, 1994.

[8] Y. Li and W. Chu, “Design and Performance Analysis
of A Multiple-threaded Multiple-pipelined Architec-
ture,” Proc. of the Second International Conference
on High Performance Computing, New Delhi, India,
December 1995.

[9] Y. Li and W. Chu, “A New Non-Restoring Square Root
Algorithm and Its VLSI Implementations,” 1996, to be
submitted.

[10] Y. Li and W. Chu, “Aizup – A Pipelined Processor
Design and Implementation on XILINX FPGA Chip,”
The Fourth Annual IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM’96), Napa, Cal-
ifornia, April, 1996.

35

