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Abstract

A new interconnection network for very large
parallel systems calledmetacube(MC) has been
introduced recently. An MC(k,m) network has
2m2k+k nodes with m+k links per node, where k is
the dimension of the high-level cubes and m is the
dimension of the low-level cubes. For example, an
MC(3,3) with 6 links per node can connect more
than one hundred of millions of nodes, extremely
larger than that of hypercube. Meanwhile, the MC
network is a symmetric network and retains the
main structures and desirable properties of the hy-
percube. In this paper, we give efficient algorithms
for multinode broadcasting in MC networks. The
time complexities of the routing and broadcasting
algorithms are analyzed and compared with that
of hypercube algorithms. Our results show that the
routing and multinode broadcasting can be done
efficiently in MC networks.

Keywords: interconnection networks, hypercube,
routing, broadcasting, algorithm

1. Introduction

The hypercube has been widely used as the in-
terconnection network in a wide variety of paral-
lel systems such as Intel iPSC [1], the nCUBE [2],
the Connection Machine CM-2 [3], and SGI Origin
2000 [4]. An n-dimensional hypercube (n-cube)
contains 2n nodes and hasn edges per node. If
uniquen-bit binary addresses are assigned to the
nodes of ann-cube, then an edge connects two
nodes if and only if their binary addresses differ
in a single bit. Because of its elegant topological
properties and the ability to emulate a wide variety
of other frequently used networks, the hypercube
has been one of the most popular interconnection
networks for parallel computer systems.

However, the number of edges per node in-
creases logarithmically as the total number of
nodes in the hypercube increases. Currently, the
practical number of links is limited to about eight
per node [4]. If one node has one processor, the to-
tal number of processors in a parallel system with
an n-cube connection is restricted to several hun-
dreds. Therefore, it is interesting to develop an in-
terconnection network which will link a large num-
ber of nodes with a small number of links per node
while retaining the hypercube’s topological prop-
erties.

Several variations of the hypercube have been
proposed in the literature. Some variations focused
on reduction of the hypercube diameter, for exam-
ple the folded hypercube [5] and crossed cube [6];
some focused on reduction of the number of edges
of the hypercube, for example cube-connected cy-
cles (CCC) [7] and reduced hypercube (RH) [8];
and some focused on both, as in the hierarchical
cubic network (HCN) [9]. One major property of
the hypercube is: there is an edge between two
nodes only if their binary addresses differ in a sin-
gle bit. This property is at the core of many algo-
rithmic designs for efficient routing and communi-
cation in hypercubes. In this paper, we refer to it
as the key property. Generally, variations of the hy-
percube that reduce the diameter, e.g. crossed cube
and hierarchical cubic network, will not satisfy this
key property.

Recently, Y. Li et al. introduced a new inter-
connection network, calledmetacube, or MC net-
work [10]. The MC network shares many desirable
properties of the hypercube (e.g., the key prop-
erty of the hypercube, low diameter etc.) and can
be used as an interconnection network for a paral-
lel computer system of almost unlimited size with
just a small number of links per node. For exam-
ple, an MC(2,3) with 5 links per node has 16384
nodes and an MC(3,3) with 6 links per node has
227 = 134,217,728 nodes. The number of nodes
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connected by the MC is much larger than that of
the HCN or the RH with the same amount of links
per node. The CCC uses only 3 links per node.
However, because of its ring structure, the diame-
ter or the length of the routing path in CCC is about
twice of that of the hypercube. Compared with the
CCC, the MC has shorter diameter, length of the
routing path, and the broadcasting time.

In this paper, we give efficient algorithms
for routing, one-to-all broadcasting and all-to-all
broadcasting in metacubes. The remainder of this
paper is organized as follows. Section 2 intro-
duces the metacube interconnection network archi-
tecture. Section 3 gives the routing and broadcast-
ing algorithms and their time complexities. Sec-
tions 4 concludes the paper and presents some fu-
ture research directions.

2. Metacube Architecture

This section introduces the MC network and
some related notation. The MC network is mo-
tivated by the dual-cube network proposed by Li
and Peng [11] [12] that mitigates the port limita-
tion problem in the hypercube network so that the
number of nodes in the network is much larger than
that of the hypercube with a fixed amount of link
per node. The MC network includes the dual-cube
as a special case. An MC network has a 2-level
cube structure: high-level cubes represented by the
leftmost k bits of the binary address of the node
which containsm2k + k bits (thesek bits serve as
a class indicator), and low-level cubes, called clus-
ters that form the basic components in the network,
represented by them bits of the remainm2k bits,
which occupy the different portions in them2k bits
for different classes.

More specifically, there are two parameters in
an MC network,k andm. An MC(k,m) contains
h = 2k classes. Each class contains 2m(h−1) clus-
ters, and each cluster contains 2m nodes. There-
fore, an MC(k,m) usesmh+k binary bits to iden-
tify a node and the total number of nodes is 2n

wheren = mh+k. The value ofk affects strongly
the growth rate of the size of the network. An
MC(1,m) containing 22m+1nodes is called adual-
cube. Similarly, an MC(2,m), an MC(3,m) and
an MC(4,m) containing 24m+2 nodes, 28m+3 nodes
and 216m+4 nodes are calledquad-cube, oct-cube
andhex-cube, respectively. Since an MC(3,3) con-
tains 227 nodes, the oct-cube is sufficient to con-
struct practically parallel computers of very large
size. The hex-cube is of theoretical interest only.
Note that an MC(0,m) is a hypercube.

A node in an MC(k,m) can be uniquely identi-
fied by a(mh+k)-bit binary number. The leftmost

k-bit binary number defines a class of the node
(classID). There areh classes. In each class, there
are 2mh nodes and each node is represented by a
mh-bit binary number. 2m nodes of the same class
form a cluster. Therefore, there are 2m(h−1) clus-
ters in each class. Anm-bit binary number, located
in a special portion of themh-bit (will be explained
in the next paragraph) identifies a node within the
cluster (nodeID). Therefore, the (mh+k)-bit node
address in an MC(k,m) is divided into three parts:
a k-bit classID, anm(h−1)-bit clusterID and an
m-bit nodeID.

In the following discussion, we useu =
(cu,Mu[h− 1], . . . ,Mu[1],Mu[0]) to denote theID
of node u, where cu is a k-bit binary number
and Mu[i], 0 ≤ i ≤ h− 1 are m-bit binary num-
bers. LetclassID(u) = cu, nodeID(u) = Mu[cu]2cu

andclusterID(u) = ∑0≤i 6=cu≤h−1Mu[i]2i . Themh-
bit numbernodeID(u)+ clusterID(u) is a unique
identifier of nodeu in class cu. For example,
u = 01,00,11,10,00 in an MC(2,2) is denoted as
node 56 of class 1 and node set(48,52,56,60) in
class 1 forms a cluster withclusterID= 48.

The links of an MC(k,m) is constructed in the
following manner. Them-bit field M[c] in the ad-
dress of a node of classc forms a low-levelm-cube
with m links, namelycube-edges. Theselow-level
m-cubes are calledclusters. A cluster containing
nodeu is denoted asCu. The links that connect
nodes among clusters are calledcross-edgesand
are defined as following. For any two nodes whose
addresses differ only in a bit position in the class
field, there is a cross-edge connecting these two
nodes. That is, thek-bit fieldc forms ahigh-level k-
cube which connects those nodes whose addresses
except class field are the same.
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Figure 1. A metacube MC(1,2)

The addresses of two nodes connected by a
cross-edge differ only on one bit position within
the k-bit class field and there is no direct connec-
tion among the clusters of the same class. There-
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Figure 2. A metacube MC(2,2)

fore, a node in an MC(k,m) hasm+k links: m links
construct anm-cube cluster andk links construct a
k-cube. For example, the neighbors in the cluster
of the node with address (01,111,101,110,000) in
an MC(2,3) have addresses (01,111,101,111,000),
(01,111,101,100,000) and (01,111,101,010,000).
The underlined bits are those that differ from the
corresponding bits in the address of the referenced
node. The two neighbors in the high-level cube are
(00,111,101,110,000) and (11,111,101,110,000).

Figure 1 shows the structure of an MC(1,2),
where the cluster is a 2-cube and there are two
classes. Each node has a cross-edge attached to
a node of the different class. The binary number
shown in the center of a cluster isclusterID. Fig-
ure 2 shows the structure of an MC(2,2), where the
clusters in the same square are of the same class.
The decimal numbers arenodeID+ clusterID. In
Figure 2, there are 22(22−1) = 64 clusters in each

square and each cluster is a 2-cube. The figure
shows only 4 high-level cubes, each of which con-
tains a distinct node in the cluster 0 of the class 0.

The ratio of the total number of links in the hy-
percube to the total number of links in the MC net-
work is equal ton/(m+k), wheren= m2k+k. For
example, fork = 2 andm= 3 (n = 14), each of the
two networks contains 16384 nodes; the hypercube
contains 16384×14/2= 114688 links and the MC
network contains 16384×(3+2)/2= 40960 links.
The reduction in the total number of links for this
example is 73728 links or about 64%. Meanwhile,
the diameter of the MC network in this example is
16, only 2 more larger than that of the hypercube.

3. Routing and broadcasting algorithms

The problem of finding a path from a source
nodes to a destination nodet and forwarding mes-
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sages along the path is known as the routing prob-
lem. The broadcast is to send a message from the
source node to all other nodes in the network. The
multinode broadcast is that a set of nodes broadcast
simultaneously to all other nodes in the network.
Routing and broadcasting are the basic communi-
cation problems for interconnection networks. In
this section, we describe routing and broadcasting
algorithms for the metacube.

We assume the package routing model (the
store-and-forward routing model) in which each
package is maintained as an entity that passed from
node to node as it moves through the network and
a single package can cross each edge during each
step of routing. We allows packages that headed
for the same destination to be combined. With the
package routing, the communication time for mes-
sage of lengthl to be sent to a node of distance
d is ts+ d l tw, wherets is startup latency, the time
required for the system to handle the message at
the source and destination nodes,tw is the per-word
transfer time.

We adopt the following notation. In the
metacube MC(k,m), each node hasm+ k neigh-
bors. Lets(i), 0≤ i ≤ k−1, be theith dimensional
neighbor of nodes within the k-cube, that is, the
addresses ofs and s(i) differ in the ith bit posi-
tion (the rightmost bit is the 0th bit) in the class
field c. Let s(i+k), 0 ≤ i ≤ m− 1, be theith di-
mensional neighbor of nodes in the m-cube, that
is, the addresses ofs ands(i+k) differ in the ith bit
position in the fieldM[c]. Let s(i, j) = (s(i))( j) for
0≤ i, j ≤ m+ k−1. We use(u→ v) to denote a
path from nodeu to nodev. If the length of a path
(u→ v) is 1 (through a single edge), the path is
denoted as(u : v), and the edge is denoted as(u,v).

3.1. Point-to-point routing in metacube

To present the routing algorithm in the
metacube, we first introduce the concept of aweak-
Hamiltonian path. In a graphG = (V,E) whereV
is the set of all vertices (nodes) andE is the set
of all edges inG, let P′ = (v0 → vh−1) = (v0 :
v1 : . . . : vh−1) be a path from nodev0 to node
vh−1, wherevi ∈ V for 0 ≤ i ≤ h− 1 and edge
(v j−1,v j) ∈ E for 1 ≤ j ≤ h− 1. We sayP′ is
a Hamiltonian pathif (1) P′ contains every node
in V and (2) nodesvi (0≤ i ≤ h− 1) are all dis-
tinct. LetP = (v0→ vh) = (P′ : vh), wherevh = vi ,
for i = 0,1, . . . , or h− 2. If vh = v0, thenP be-
comes aHamiltonian cycle1; otherwise, we call

1A Hamiltonian cycle is defined as a path through a graph
which starts and ends at the same vertex and includes every
other vertex exactly once.

P a extended-Hamiltonian path. The length of a
Hamiltonian path in ak-cube is 2k−1; the length
of a Hamiltonian cycle or an extended Hamilto-
nian path is 2k. Let a weak-Hamiltonian pathbe
a Hamiltonian path, a Hamiltonian cycle, or an
extended-Hamiltonian path. We need the follow-
ing lemma to solve the routing problem:

Lemma 1. Given any two nodes s and t in an n-
cube, there exists a weak-Hamiltonian path from s
to t.

Proof: We first observe that, given an edgee =
(u,v) in then-cube, there always exists a Hamilto-
nian cycle passing throughe. This can be demon-
strated easily by renumbering the nodes of the cube
such thatu = 0. . .00 andv = 0. . .01, and then the
Hamiltonian cycle can be constructed by the Gray
code2 of the new numbers.

We use induction onn to prove the lemma.
For n = 2, the lemma is true: the four weak-
Hamiltonian paths starting from node 00 are 00 :
01 : 11 : 10 : 00 (Hamiltonian cycle), 00 : 10 : 11 :
01 (Hamiltonian path), 00 : 01 : 11 : 10 (Hamil-
tonian path) and 00 : 01 : 11 : 10 : 11 (extended-
Hamiltonian path). Considern ≥ 3. An n-cube
consists of two (n−1)-cubes, with the nodes num-
bered by preceding the original node numbers of
the two subcubes with 0 and 1, respectively, and
connecting each node with the number 0x to the
node with the number 1x. The two (n−1)-cubes
forming then-cube are known as its 0-subcube and
1-subcube, respectively. The proof of the lemma is
divided into two cases.

Case 1: The nodess andt belong to the same
(n−1)-cube, say the 0-subcube, of then-cube. That
is, the most-significant-bit of each node address
is 0. By our induction hypothesis, there is a
weak Hamiltonian pathP from s to t in the 0-
subcube. Suppose thatPcontains edgee= (s,s( j)),
i.e. P = (s : s( j) → t). Then we find a Hamil-
tonian cycle in the 1-subcube that contains edge
e′ = (s(n−1),s( j,n−1)). A weak Hamiltonian path in
then-cube is(s: s(n−1)→ s( j,n−1) : s( j)→ t), where
the subpath(s(n−1) → s( j,n−1)) is the Hamiltonian
path in the 1-subcube formed by removing the edge
e′ from the Hamiltonian cycle.

Case 2: The nodessandt belong to the distinct
(n−1)-cubes, says∈ 0-subcube andt ∈ 1-subcube,
of the n-cube. First, we find a Hamiltonian cycle
in the 0-subcube. Suppose that it contains edge
e = (s,s( j)). By the induction hypothesis, there
is a weak Hamiltonian pathP = (s( j,n−1) → t) in
the 1-subcube. Then the weak Hamiltonian path

2A Gray code for binary numbers is a listing of alln-bit
numbers so that successive numbers, including the first and last,
differ in exactly one bit position.
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in then-cube is(s→ s( j) : s( j,n−1)→ t), where the
subpath(s→ s( j)) is the Hamiltonian path in the 0-
subcube formed by removing the edgee from the
Hamiltonian cycle.

Since we can modify only a small portion (m
bits) by cube-edges, we need to move to clusters of
distinct classes (along cross-edges) to modify the
other portions of theID. We also need to arrange
the traveling order so that the last portion modified
is thenodeIDof t or its neighbor, so that we do
not need to travel a long distance back tot - do-
ing nothing. Since there areh classes, the efficient
way to do this is by following a weak Hamiltonian
path fromcs (class number of nodes) to ct (class
number of nodet) in thek-cube.

For each nodeu in thek-cube, letnext(u) be the
node next tou in the weak-Hamiltonian path from
cs to ct . next(u) = /0 if u is the last node of the
weak-Hamiltonian path. Let the node addresses
of s and t be (cs,Ms[h− 1], . . . ,Ms[1],Ms[0]) and
(ct ,Mt [h− 1], . . . ,Mt [1],Mt [0]), respectively. The
routing algorithm is given below. TheLoop will
terminate when thebreak is executed. Notice that
the details of routing in the hypercube is omitted in
the algorithm.

Algorithm 1 (One2OneRouting(m,k,s, t))

1.begin /* build aP = (s→ t) in MC(k,m) */
2. u = cs;
3. v = s;
4. P = v;
5. Loop always
6. w = (u,Mv[h−1], . . . ,Mv[u+1],Mt [u],

Mv[u−1], . . . ,Mv[0]);
7. if (w 6= v) P = (P→ w);
8. if (w == t) break;
9. v = w;

10. w = (next(u),Mv[h−1], . . . ,Mv[u+1],
Mv[u],Mv[u−1], . . . ,Mv[0]);

11. P = (P : w);
12. u = next(u);
13.end.

Example 1. In an MC(2,3), assumes =
00,000,000,000,000, t = 00,001,110,101,011.
The weak-Hamiltonian path for(s→ t) in the high-
level 2-cube is a Hamiltonian cycle of 00 : 01 : 11 :
10 : 00. The path(s→ t) is

00,000,000,000,000 : 00,000,000,000,001 :
00,000,000,000,011 : 01,000,000,000,011 :
01,000,000,001,011 : 01,000,000,101,011 :
11,000,000,101,011 : 11,001,000,101,011 :
10,001,000,101,011 : 10,001,010,101,011 :
10,001,110,101,011 : 00,001,110,101,011

Let Hi(s, t), 0≤ i ≤ h−1, be the Hamming dis-
tance betweens andt in M[i], i.e. the number of
bits with distinct values inMs[i] andMt [i].

From the algorithm, the longest length of the
routing path is 2k + Hh(s, t), where Hh(s, t) =
∑h−1

i=0 Hi(s, t). This formula gives an upper bound
to d(s, t), the distance betweens and t in an
MC(k,m).

Clearly, we haveHh(s, t) ≤ d(s, t) ≤ Hh(s, t)+
2k. Let H(s, t) be the Hamming distance between
s and t, then H(s, t) = Hh(s, t) + Hk(s, t), where
Hk(s, t) is the Hamming distance betweens andt
in c field. We haveHh(s, t) ≤ d(s, t) ≤ H(s, t) +
2k−Hk(s, t).

The longest path in an MC(k,m) is from s =
0· · ·0 to t, wherect = 0· · ·0 and Mt [i] = 1· · ·1
for all i, 0 ≤ i ≤ h− 1. The length of this path
is 2k(m+ 1). It is easy to see that this path is the
shortest path for connectings andt. Therefore, it
is the diameter of an MC(k,m).

Since the average distance in each cluster is
m/2, the average distance between any two nodes
in an MC(k,m) is at most(m/2)2k + 2k = (n−
k)/2+2k, wheren= m2k+k (in the case of Hamil-
tonian path, it is(n−k)/2+2k−1).

It is possible to have a routing algorithm in an
MC(k,m) which bypasses the classc if Ms[c] =
Mt [c]. In such a case, the length of the routing path
for somes and t might be shorter than that pro-
duced by the algorithm above. We put these results
into the following theorem.

Theorem 1. In an MC(k,m), let d(s, t) and
davg(s, t) be the distance and the average distance
between any two nodes s and t, respectively. Let
H(s, t) be the Hamming distance between s and
t. Then d(s, t)≤ H(s, t)+2k−Hk(s, t) and davg≤
(n−k)/2+2k, where Hk(s, t) is the Hamming dis-
tance between s and t in the class field. The diam-
eter of an MC(k,m) is2k(m+1).

From Theorem 1, the length of the routing path
for somes and t might be 2k longer than that of
the routing path for thes and t in the n-cube in
the worst case. This is mainly due to the fact that
there are 2k classes in an MC(k,m) and the direct
connection between two nodes whoseIDs differ in
1-bit only is limited to a small portion ofn= m2k+
k bits.

However, the size of the MC network increases
extremely rapidly withk, e.g. the number of nodes
in an MC(k,3) are 214, 227, and 252, for k = 2, 3,
and 4, respectively. Therefore, no matter how large
the network required, it is practically sufficient to
considerk ≤ 3. In such cases, the length of the
routing path fors andt in the MC will be at most
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that of the shortest routing path fors andt in the
n-cube plus eight, even though the network might
have hundreds of millions of nodes.

3.2. One-to-all broadcast in metacube

In this subsection, we show how to perform
one-to-all broadcast [13] in metacube. We assume
that the communication links are bidirectional;
that is, two directly-connected processors can send
messages to each other simultaneously. We also
assume the processor-bounded model (one-port
model) in which each processor cannot use more
than one link for sending messages nor receive
more than one message at a time. The port model
of a network system refers to the number of in-
ternal channels at each node. In order to reduce
the complexity of communication hardware, many
systems support one-port communication architec-
tures, in which each node can send and receive cer-
tain amount of data through a link in unit time.

We want to minimize the transmission time for
one-to-all broadcast in metacube. It is known
that one-to-all broadcast cannot be done in less
than logp time on any architecture in the one-port
model, wherep is the number of nodes in the net-
work.

For efficient broadcast, we first construct a
Hamiltonian cycle in thek-cube using the Gray
code of theclassIDs. For each nodeu in the
k-cube, let next(u) is the node next tou on
the Hamiltonian cycle. Let the source node be
s. The pseudocode of the algorithm for broad-
casting a message froms to all other nodes in
an MC(k,m) is set out in detail below. Notice
that all the nodes execute the pseudocode simul-
taneously and each node has its ownmy_ID =
(my_classID,my_clusterID+my_nodeID).

Algorithm 2 (One2AllB(m,k,my_ID,s,msg))

1.begin /* Nodesbroadcasts */
2. u = cs;
3. maskh= 2m2k−1;
4. maskm= 2m−1;
5. for i = 0 to 2k−1 do
6. maskh= maskh⊕ (maskm<< (m×u));
7. if ((my_ID∧maskh) == (s∧maskh)) &

(my_classID== u)
8. Cube_Bcast(m,my_nodeID,Ms[u],msg);
9. if (i 6= 2k−1)

10. if (my_classID== u)
11. sendmsgto (next(my_classID),

my_clusterID+my_nodeID);
12. u = next(u);
13. Cube_Bcast(k,my_classID,u,msg);
14.end.

15.Procedure CubeBcast(d,my_id,s,msg)
16.begin /* one-to-all broadcast in ad-cube */
17. mask= 2d−1;
18. For i = 0 to d−1 do
19. mask= mask⊕2i ;
20. if (((my_id⊕s)∧mask) == 0)
21. if (((my_id⊕s)∧2i) == 0)
22. sendmsgto ((my_id⊕s)⊕2i)⊕s;
23.end.

Example 2. In an MC(2,2), assumes =
00,00,00,00,00. The first “for” loop of Algorithm
2 has four iterations. The nodes of each class that
receivedmsgafter each iteration are indicated be-
low.

i ClassID Node (clusterID+nodeID)
0 1 0–3
1 3 0–15
2 2 0–15, 64–79, 128–143, 192–207
3 2 All nodes

Next, we show that the algorithm is correct and
derive the transmission time of the broadcast algo-
rithm. In the first stage, at each iteration, the node
which holds the message broadcasts the message
within the cluster, anm-cube, through the binomial
tree of the cluster (line 8), and then, each node in
the cluster sends the message to a distinct cluster
through the cross-edge (line 11). Therefore, the
number of clusters that hold the message increased
by a factor of 2m. There areh= 2k iterations in the
first stage. At the end of the first stage, every node
in the clusters of classu, whereu is the last node of
the Hamiltonian path, will receive the message. In
the second stage, every node in the cluster of class
u broadcasts the message to the nodes in the clus-
ters of all other classes through the binomial tree
of thek-cube (line 13). Therefore, at the end of the
second stage, all nodes in an MC(k,m) received the
message.

The transmission time for the broadcasting may
be determined as follows. The broadcast through
Hamiltonian path can be done inh = 2k iterations.
Each iteration of the “for” loop, except for the last
iteration, takes(m+1)(ts+ l tw) time since broad-
casting inside the cluster requiresm steps and go-
ing throughnext requires one step. The last it-
eration requiresm steps only. So, the first stage
can be done in[(h− 1)(m+ 1) + m](ts + l tw) =
(mh+ h−1)(ts+ l tw) time. The second stage re-
quiresk(ts+ l tw) time. Therefore, the transmission
time for the broadcast in an MC(k,m) is (mh+k+
h−1)(ts+ l tw) = (h−1+ logp)(ts+ l tw), where
p = 2mh+k, the total number of nodes. We summa-
rize the result into the following theorem.
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Theorem 2. Assume that each node can use only
one link at a time and the package routing model is
adopted. The one-to-all broadcast in an MC(k,m)
can be done in(2k−1+ logp)(ts+ l tw) time.

3.3. All-to-all broadcast in metacube

All-to-all broadcast [13] is a generalization of
one-to-all broadcast in which all nodes simultane-
ously initiate a broadcast. A node sends the same
l -word message to every other node, but different
nodes may broadcast different messages. The com-
munication pattern of all-to-all broadcast can be
used to perform some other operations, such as re-
duction and prefix sums.

The lower bound for the communication time of
all-to-all broadcast for parallel computers on which
a node can communicate on only one of its ports
at a time is(p− 1)ltw, wherep is the number of
nodes. This is because each node receives at least
(p−1)l words of data, regardless of the architec-
ture or routing scheme. An efficient way to per-
form all-to-all broadcast is to perform allp one-to-
all broadcasts simultaneously so that all messages
traversing the same path at the same time are con-
catenated into a single message whose size is the
sum of the sizes of individual messages.

The algorithm for all-to-all broadcast in
metacubes can be described in two stages. In
the first stage, the messages are broadcasted in-
side each cluster and then are sent through cross-
edges. In every broadcast step in the cluster, pairs
of nodes exchange their data and double the size
of the message to be transmitted in the next step
by concatenating the received message with their
current data. And then, each node in a cluster of
classi, 0≤ i ≤ h−1, sends the identical message
to a node in a cluster of classnext(i), wherenext(i)
is defined as the node next toi on the Hamilto-
nian cycle (similarly,prev(i) is the node before
i on the Hamiltonian cycle). This process is re-
peatedh= 2k times. After this stage, every node of
classi received a concatenated message containing
messages from all the nodes of classj, for some
j. Finally, in the last stage, every node exchanges
and combines the concatenated message, through
the edges in thek-cube. The pseudocode of the
algorithm is listed below. The algorithm is exe-
cuted at all nodes concurrently.my_ID is theID of
the node. The initial message to be broadcasted is
my_msgat each node. At the end of the procedure,
each node stores the collection of allp messages in
result.

Algorithm 3 (All2AllB( m,k,my_ID,my_msg, result))

1.begin

2. result= my_msg;
3. for j = 0 to 2k−1 do
4. for i = 0 to m−1 do
5. partner= my_ID⊕2i+m×my_classID;
6. sendresult to partner;
7. receivemsgfrom partner;
8. result= result∪msg;
9. if ( j 6= 2k−1)

10. sendresult to (next(my_classID),
my_clusterID+my_nodeID);

11. receivemsgfrom (prev(my_classID),
my_clusterID+my_nodeID);

12. result= msg;
13. for j = 0 to k−1 do
14. partner= my_ID⊕2 j+m2k

;
15. sendresult to partner;
16. receivemsgfrom partner;
17. result= result∪msg;
18.end.

Example 3. Assume the metacube is MC(2,2).
The first “for” loop of Algorithm 3 has four iter-
ations. In the following, we show the content of
result in some nodes after each iteration, that is,
the nodes whosemsgare included inresult.

• After the 1st iteration, nodes 0, 4, 8 and 12 of
class 1 (in one cluster) will contain messages
from nodes (0–3), (4–7), (8–11) and (12–15)
of class 0, respectively.

• After the 2nd iteration, nodes 0, 64, 128 and
192 of class 3 (in one cluster) will contain mes-
sages from nodes (0–15), (64–79), (128 – 143)
and (192–207) of class 0, respectively.

• After the 3rd iteration, nodes 0, 16, 32 and 48
of class 2 (in one cluster) will contain messages
from (0–15, 64–79, 128–143, 192–207), (16–
31, 80–95, 144–159, 208–223), (32–47, 96–
111, 160–175, 224–239) and (48–63, 112–127,
176–191, 240–255) of class 0, respectively.

• After the 4th iteration, every node of classes 0,
1, 3 and 2 will contain messages from all the
nodes of classes 1, 3, 2 and 0, respectively. Af-
ter the broadcasting in thek-cube, every node
will contain messages from all the nodes in an
MC(k,m).

3.4. Transmission Time Analysis

We analyze the transmission time of the algo-
rithm as follows. The time it takes to complete
the first stage contains two parts: one for broad-
casting inside clusters and one for transferring data
between clusters through cross-edges.

T1 =
h

∑
j=1

m

∑
i=1

(ts+2( j−1)m+(i−1) l tw)+
h−1

∑
j=1

(ts+2 jm l tw)
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Table 1. Communication Times: Hypercube vs Metacube

Comm. Pattern Hypercube Metacube

Tone−to−one ts+H(s, t) l tw ts+[H(s, t)+h−Hk(s, t)] l tw

Tone−to−all (logp)(ts+ l tw) (h−1+ logp)(ts+ l tw)
Tall−to−all (logp) ts+(p−1) l tw (h−1+ logp) ts+[p−1+(2mh−1)/(2m−1)−1] l tw

The time it takes to complete the second stage:

T2 =
k

∑
i=1

(ts+2mh+i−1 l tw)

The total time to complete the all-to-all broadcast:

Tall−to−all = T1 +T2 =

(h−1+ logp) ts+[p−1+(2mh−1)/(2m−1)−1] l tw

Theorem 3. Assume that each node can use only
one link at a time and the package switching model
is used. The all-to-all broadcast in an MC(k,m)
can be done in(h−1+ logp) ts+[p−1+(2mh−
1)/(2m−1)−1] l tw time, where h= 2k.

The communication times of our routing al-
gorithms for one-to-one, one-to-all, and all-to-all
broadcast in metacube are summarized and com-
pared to that of the hypercube in Table 1.

4. Conclusion and future work

In this paper, we showed that routing and broad-
casting can be done efficiently in the metacube.
The results showed that metacube has tremendous
potential to be used as an interconnection network
for very large scale parallel computers since it can
connect hundreds of millions of nodes with up to
6 links per node and the routing and multinode
broadcasting can be done almost as efficient as in
hypercube. To make the metacube could be of
practical use to academia and industry, some issues
concerning the metacube listed below are worth
further research.

1. Evaluate the architecture complexity vs. per-
formance of benchmarks vs. real cost.

2. Investigate the embedding of other frequently
used topologies into a metacube.

3. Develop techniques for mapping application
algorithms onto a metacube.

4. Develop fault-tolerant routing algorithms for a
metacube with faulty nodes.
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