
Seventh International Conference on Parallel and Distributed Computing and Systems, Oct. 19 – 21, 1995, Washington D.C. pp.477–480

Design and Implementation of a Multiple-Instruction-Stream

Multiple-Execution-Pipeline Architecture

Yamin Li and Wanming Chu

Computer Architecture Laboratory
The University of Aizu, 965-80 Japan

Abstract
This paper describes a single chip Multiple-Instruction-

Stream Multiple-Execution-Pipeline (MIS-MEP) architec-
ture capable of improving processor throughput. The MIS-
MEP architecture uses multiple instruction dispatch/branch
units (slots) to dispatch instructions from multiple instruc-
tion streams. Multiple dedicated execution pipelines are pro-
vided that are shared by these slots and instructions can be
executed on the pipelines in parallel. The slot can communi-
cate and synchronize with one another via queues and syn-
chronization registers. Two examples show how to use the
queues and synchronization registers. The MIS-MEP pro-
cessor can issue 3.945 and 1.633 instructions per cycle in
the two examples respectively.

1 Introduction
The processor performance can be measured by the exe-

cution time on some suitable work load. The execution time
of a program can be expressed as the product of three terms
[1]:

time = inst count ∗ cycles per inst ∗ time per cycle

In order to maximize performance, a number of different ap-
proaches have been used to decrease this quantity. CISC ma-
chines attempt to reduce the number of instructions required
to complete a task. Most current single-chip RISC proces-
sors try to minimize the number of cycles per instruction
(CPI) at the expense of an increase in the number of instruc-
tions required. To minimize the time per cycle rely primarily
on technological advances that involve finding new materi-
als and techniques to make gates that switch faster. In this
paper, we introduce a multiple-instruction-stream multiple-
execution-pipeline (MIS-MEP) processor architecture that
can exploit the instruction level parallelism (ILP) available
in a task so that the CPI term can be reduced dramatically.

Several architectures have been developed for exploiting
the ILP but the most commercially successful architecture
is the superscalar architectures [2], which execute multiple
independent instructions in parallel. The superscalar proces-
sors issue and execute instructions from a single instruction
stream. Several studies have implied that the amount of in-
struction level parallelism available is between two or three
instructions. For this reason, the most superscalar processors

can not fully use the multiple dedicated execution pipelines
which are responsible for executing corresponding instruc-
tions. For example, the MC88110 superscalar microproces-
sor can issue only at most two instructions per cycle although
a set of ten different execution units are provided [3].

The MIS-MEP architecture tries to execute multiple in-
structions from multiple instruction streams. Multiple in-
struction dispatch/branch units (slots) fetch instructions from
multiple instruction streams and issue them to multiple ded-
icated execution pipelines. We can consider that each slot
makes up a logical processor, a physical MIS-MEP proces-
sor consists of multiple logical processors, and the multi-
ple dedicated execution pipelines are shared by these logical
processors.

The paper is organized as follows. Section 2 presents the
MIS-MEP architecture. Section 3 analyzes the performance
potential of MIS-MEP architecture. The final section con-
cludes the paper.

2 The MIS-MEP Architecture
2.1 The MIS-MEP Organization

In the MIS-MEP architecture, multiple slots, multi-
ple dedicated execution pipelines, and multiple register
files/queues are provided for executing multiple instructions
from multiple instruction streams in parallel. All the slots
dispatch instructions on every clock cycle. Instructions
are scheduled and issued to multiple dedicated execution
pipelines for execution and results are written to register
files/queues.

Figure 1 shows the MIS-MEP processor architecture. Dif-
fering from a conventional pipelined processor, the MIS-
MEP architecture described in this paper consists of four in-
struction dispatch/branch units (slots). Each slot has its own
program counter, status register, and register file/queue. A
separate instruction cache is provided for each of slots. On
every clock cycle, up to four instructions can be dispatched.
Five execution pipelines (two ALU, a floating point adder, a
floating point multiplier, and a load/store unit) are provided
for executing corresponding instructions. The total 128 gen-
eral registers are provided for the four slots, each slot has
32 general registers. The 16 synchronization registers can
be accessed (read and write) by slots. The queues are used
for data transmission between the four slots. The MIS-MEP

477

ALU ALU FPA FPM LSU

SLOT1 SLOT2 SLOT3 SLOT4

REGISTER
FILE1

REGISTER
FILE2

REGISTER
FILE3

REGISTER
FILE4

SYNC REG
FILE

INTERCONNECTION NETWORK

INST
CACHE1

INST
CACHE2

INST
CACHE3

INST
CACHE4

DATA
CACHE

PROCESSOR BUS INTERFACE

ADDRESS BUS DATA BUS

SCHEDULESCHEDULESCHEDULESCHEDULESCHEDULE

QUEUES

Figure 1: The MIS-MEP processor architecture

processor instruction can fetch source operands from queues
and can also write the results to queues in addition to the
general registers (see Figure 2).

SLOT 1 SLOT 2 SLOT 3 SLOT 4

s1

q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4

s2 s3 s4

Figure 2: The MIS-MEP processor’s queue concept

Dispatched instructions are scheduled byinstruction
scheduling units(ISUs). Each execution pipeline has a ISU.
If there is neither resource conflict among four instructions
(for example, at most one instruction arrived at ISU of an
execution pipeline), nor instruction dependencies with pre-
viously issued instructions within a instruction stream, in-
structions are issued to execution pipelines. The resource
conflicts occur when two or more instructions require the
same class execution pipelines while the amount of this class
execution pipelines is less than the number of requirements.

The ISU selects one instruction to issue to the execution
pipeline if dispatched instructions cause resource conflicts.
A simple instruction scheduling strategy,round robin, is
employed. A prioritized method may be used in our archi-
tecture at the cost of extra gates and the necessity of priority
assignment by user [4].

Availability of source register operands is checked by us-
ing thescoreboardmechanism. If the scoreboard bits of the

source register operands are cleared, a ready instruction is
found. Then the source operands are read out from the cor-
rect register file and destination register’s scoreboard bit is
set. The scoreboard bit will be cleared at the final clock cycle
of execution stage. Thus the scoreboard bits could prevent
incorrect data from entering into the pipeline. The source
operands can also be read from queues. TheEmpty/Full
mechanism is used for queue access.

The ISU is provided with FIFO registers. Un-issued in-
structions will be held in the FIFO, waiting for scheduling
in the following clock cycle. The corresponding slot is in-
formed to stop fetching instruction in the following clock cy-
cle. Because the next instruction to the un-issued instruction
is being fetched because of pipelined operation, the depth of
the FIFO must be at least two. The total number of FIFO
registers is 2 * 4 * 5, where 4 is the number of slots and 5 is
the number of execution pipelines. The execution pipelines
carry out the desired data operations, and the results are writ-
ten back into register file/queues.

An Un-Blocking Interconnection Network(UBIN) is
needed between the register files/queues and the execution
pipelines. From the programmer’s point of view, this physi-
cal MIS-MEP processor is equal to four logical processors.

2.2 The Pipeline Stages
In our architecture model, each instruction pipeline com-

prises 4 stages: instruction fetch (IF), schedule and de-
code (SD), execution (EX), and write back (WB). During
the IF-stage, each slot may fetch one instruction from ded-
icated cache. The instruction fetching unit may receive a
“ freeze fetching ” signal from ISUs. In this case, the
fetching operation will be frozen. Resource conflict and
source operand availability will be checked in the SD-stage.
As mentioned above, the processor use the round robin strat-
egy to schedule the instructions. If an instruction is not is-
sued to execution pipeline, it will be held in the two-word
depth FIFO, and, the “freeze fetching ” signal will be
sent to the corresponding instruction fetching unit. Operands
of selected instruction are read in SD-stage. The UBIN pro-
vides un-blocking paths for transferring data from the reg-
ister files/queues to the execution pipelines. The desired
data operations are performed in the EX-stage. For most
instructions, the execution stage takes one clock cycle, but
others take more. The results are written back into register
file/queues in the WR-stage. The UBIN also provides un-
blocking paths for transferring data from the result-registers
to the register files/queues.

2.3 The Instruction Format
All instructions in MIS-MEP processor are 32 bits in

length, and are of four formats (see Figure 3). The format
0 instructions have two source operand specifiers and a des-
tination specifier. The format 1 instructions have a source
operand specifier, a 12 bit signed constant, and a destina-
tion specifier. The format 2 instructions arebsr (branch
to subroutine) instruction andbcnd (conditional branch) in-
struction, in which the displacement is a 24-bit signed word-

478

offset. The format 3 instruction issethi (Set High Imme-
diate) instruction in which the immediate is a 24-bit constant
that will be used to replace the high-order 24 bits of destina-
tion register, the low-order 8 bits will be cleared.

00 Dest Source1 Source2Opcode

10 Dest

3130 29 18 17 6 52324 0

Immediate

Format 0:

Format 1:

Format 3:

10 Cond Displacement

Format 2:

Displacement

01 Dest Source1 Opcode

12 11

Immediate

000000

0

1

11 Dest

Register Address

Queue
Address

0

1 0

1

Sync Reg Address

1

5

0 0

4 3 2 1 0

Source/destination operand Format:

Figure 3: The instruction format of the MIS-MEP processor

As can be seen in Figure 3, a MIS-MEP processor instruc-
tion uses 6 bits to specify a source or destination operand. If
the first bit is a 0, then the other 5 bits are used to address
one of the general registers in the register file. If the first bit
is a 1 and second bit is a 0, then the other 4 bits are used to
address one of the synchronization registers which are used
for synchronization between four instruction streams. If the
first and second bits are both 1, then the last 2 bits are used
to address one of the queues (refer to Figure 2).

In the MIS-MEP processor architecture, we extend basic
RISC instruction set to support the initialization of a new
instruction stream and the synchronization of two instruction
streams with following instructions.

sfork - to create a new instruction stream,
sjoin - to terminate an instruction stream,
sbclr - synchronization bit clear, and
sbset - synchronization bit set.

The sfork and sjoin instructions are used to create
and terminate an instruction stream. Thesbclr andsbset
are used to synchronize two instruction streams. Each bit of
a synchronization register can be used for this purpose.

3 Analysis
In order to analyze the performance potential of the

MIS-MEP architecture, several small benchmarks were hand
compiled and optimized. Two examples have been chosen to
show how to use the synchronization registers and queues
and to illustrate the abilities of the MIS-MEP architecture.

The first example is the Lawrence Livermore Loops. We
use the C source version of LLL #3 for purposes of this anal-
ysis [5]:

main()
{

float z[1000], x[1000], q;
int k;
q=0.0;
for(k=0;k<1000;k++)

q+=z[k]*x[k];
}

The assemble codes for general-purpose RISC processor
are shown as following.

add r2,r0,1000 ; k=1000, [r0] is zero.
add r7,r0,r0 ; q=0.0
sethi r3,high(z) ; z high 24 bits base address
sethi r4,high(x) ; x high 24 bits base address
sethi r5,high(q) ; q high 24 bits address
or r3,r3,low(z) ; z low 8 bits base address
or r4,r4,low(x) ; x low 8 bits base address
or r5,r5,low(q) ; q low 8 bits address
@L100:
ld r8,r3,0 ; load z[k]
ld r9,r4,0 ; load x[k]
add r3,r3,4 ; update index of z
fmul r8,r9,r8 ; z[k]*x[k]
subcc r2,r2,1 ; k=k-1 and set condition code
add r4,r4,4 ; update index of x
bgt @L100 ; if k>0,continue, delay branch
fadd r7,r8,r7 ; q=q+z[k]*x[k], delay slot
st r5,r7 ; store q

We use the extended instructions to create three new in-
struction streams. Together with original stream, there are
four instruction streams and each performs one of fourth loop
operations. In the loop bodies, four instruction streams were
executed in fully parallel as shown in Figure 4. Note that the
bgt was executed in the Instruction Dispatch/Branch Unit.
Consider the total performance (taking account of the other
parts of instructions), we got a CPI rate of 0.253, i.e., 3.945
instructions were allowed to issue each clock cycle.

ld ld add addfmul subcc bgt faddp_q1:

p_q2:

p_q3:

p_q4:

CLK:

ALU1:

ALU2:

FADD:

FMUL:

LSU:

idle busy

ld ld

ld ld add addfmul subcc bgt faddbgt fadd

ld ld add addfmul subccaddsubcc bgt fadd

ld ld add fmuladd addfmul subcc bgt fadd

Figure 4: The execution of loop body of example 1

The second example program isstrcpy() function.
Compare to the first example, this function has little paral-
lelism due to the dependency found in the loop control vari-
able.

479

main()
{

char *str1="This is an example string", str2[26];
while (*str2++=*str1++);

}

The assemble codes for general-purpose RISC processor
are shown as following.

sethi r2,high(str1) ; str1 high 24 bits address
sethi r3,high(str2) ; str2 high 24 bits address
or r2,r2,low(str1) ; str1 low 8 bits address
or r3,r3,low(str2) ; str2 low 8 bits address
@L100:
ldb r4,r2,0 ; load a character of str1
add r2,r2,1 ; update index of str1
subcc r0,r4,r0 ; determine if end
stb r3,r4 ; store a character of str2
bgt @L100 ; if not, continue, delay br.
add r3,r3,1 ; update index of str2

Four slots work in following manner. The slot 4 performs
destination address calculation. The calculated address is put
into queue4 of slot 1 for store operation. The slot 3 performs
source address calculation and the calculated address is put
into queue3 of slot 2 for load operation. The slot 2 is respon-
sible for loading characters of source string according to the
addresses found in the queue3 and put the characters into
queue2 of slot 1. The slot 1 is responsible for loop control
and store character store. It gets the characters from queue2,
and gets addresses from queue4 for store operation. In the
following code segments, we uses1, s2, s3 , ands4 to
refer to destination queues and useq1, q2, q3 , andq4
to refer to source queues.

SLOT 1: ; loop control and char store

sfork slot2,r2 ; create other three streams
sfork slot3,r3 ; r2, r3, and r4 contain the
sfork slot4,r4 ; start addresses of streams
subcc r2,q2,r0 ; get char from q2, end?
@L100:
stb q4,r2 ; store char, q4: mem-adr
bnz @L100 ; if not, continue, delay br.
subcc r2,q2,r0 ; get char from q2, end?
sjoin slot2 ; terminate the inst stream 2
sjoin slot3 ; terminate the inst stream 3
sjoin slot4 ; terminate the inst stream 4

SLOT 2: ; load characters

@L100:
ldb s1,q3 ; load char to s1, q3:mem-adr
bra @L100 ; branch always
nop ; no operation

SLOT 3: ; source address calculation

sethi r2,high(str1) ; str1 high 24 bits address
or r2,r2,low(str1) ; str1 low 8 bits address
@L100:
mov s2,r2 ; send adr to s2 for load
bra @L100 ; branch always
add r2,r2,1 ; update adr of str1 (source)

SLOT 4: ; dest address calculation

sethi r2,high(str2) ; str2 high 24 bits address
or r2,r2,low(str2) ; str2 low 8 bits address

@L100:
mov s1,r2 ; send adr to s1 for store
bra @L100 ; branch always
add r2,r2,1 ; update adr of str2 (dest)

bnz subccp1:

p2:

p4:

CLK:

ALU1:

ALU2:

FADD:

FMUL:

LSU:

idle busy

ldbra nop

st bnz subccst bnz subccst

ldbra nop ldbra nop

p3: mov addbra

mov addbra

mov addbra

mov addbra

mov addbra

mov braadd

Figure 5: The execution of loop body of example 2

The four instruction streams’ execution sequences are
shown in Figure 5. We got a total CPI rate of 0.613, i,e,
1.633 instructions were allowed to issue each clock cycle.
Achieving a CPI rate of about 0.6 for this example is an ex-
cellent result.

4 Conclusion Remarks
In this paper, we have described the MIS-MEP archi-

tecture designed to exploit instruction level parallelism.
The MIS-MEP processor features multiple instruction dis-
patch/branch units sharing multiple dedicated execution
pipelines and communicating and synchronizing with one
another via queues and synchronization registers. A num-
ber of new instructions have been developed for the multiple
instruction streams’ management. Two examples, one holds
sufficient parallelism and the other displays little parallelism,
have been selected for showing the performance potential of
the MIS-MEP architecture.

References
[1] J. hennessy and D. Patterson,Computer Architecture, A

Quantitative Approach, Morgan Kaufmann Publishers,
Inc., 1990

[2] M. Johnson, Superscalar Microprocessor Design,
Prentice Hall, 1990.

[3] K. Diefendorff and M. Allen,“Organization of the Mo-
torola 88110 Superscalar RISC Microprocessor,” in
IEEE MICRO, April 1992.

[4] S. Fiske and W. dally, “Thread Prioritization: A Thread
Scheduling Mechanism for Multiple-Context Parallel
Processors. inProc. of the First IEEE Symposium
on High-Performance Computer Architecture, January
1995.

[5] G. Tyson, M. farrens, and A. Pleszkun, “MISC: A Mul-
tiple Instruction Stream Computer”, inProc. of the 25th
annual International Symposium on Microarchitecture,
December 1992.

480

