
Proceedings of the ISCA 17th International Conference on Parallel and Distributed Computing Systems, San Francisco, California, Sep. 2004, pp222-228

Adaptive-Subcube Fault Tolerant Routing in Dual-Cube with Very Large
Number of Faulty Nodes

Yamin Li and Shietung Peng Wanming Chu
Department of Computer Science Department of Computer Hardware

Hosei University University of Aizu
Tokyo 184-8584 Japan Aizu-Wakamatsu 965-8580 Japan

Abstract
The dual-cube is a newly proposed interconnection net-

work for linking a large amount of nodes with low node
degree. It uses low-dimensional hypercubes as building
blocks and keeps the main desired properties of the hyper-
cubes. In this paper, we give an efficient algorithm for fault
tolerant routing in dual-cube networks with a large number
of faulty nodes. Our algorithm uses the adaptive-subcube
technique to select a suitable dimension to route a node.
This technique not only increases the routing speed but also
shortens the path and improves the successful routing rate.
The experimental results show that, with high percentages
of node failures, the algorithm can build routing paths with
a very high probability. Our simulation results show that
when a dual-cube with 32,768 nodes contains up to 20 per-
cent faulty nodes, the success rate of constructing a fault-
free path between any two nonfaulty nodes is 99.5 percent
with a 4-subcube.

1 Introduction

As the size of computer networks increases continu-
ously, the node failures are inevitable. Routing in com-
puter networks with faults has been more important and
has attracted considerable attention in the last decade. Hy-
percube is a popular network studied by researchers and
adopted in many implementations of parallel computer sys-
tems, such as Intel iPSC, the nCUBE [3], the Connection
Machine CM-2 [9], and the SGI’s Origin 2000 (1996) [8]
and Origin 3000 (2000).

In an n-dimensional hypercube, or n-cube for short, re-
moving n neighbors of any node u will disconnect u from
the other part of the network. Therefore, the fault tolerance
of an n-dimensional hypercube is n− 1.

This is a theoretical definition of hypercube’s fault toler-
ance. In the realistic case, the probability that the n faulty
nodes are exactly are the neighbors of a nonfaulty node is
very low. Also, the ratio of the number of faulty nodes

to the total number of nodes is too small to have a practi-
cal impact. Previous research have shown that a hypercube
can tolerate a constant fraction of faulty nodes. For ex-
ample, Najjar et al [7] demonstrated that for the 10-cube,
33 percent of nodes can fail and the network can still re-
main connected with a probability of 99 percent. Gu and
Peng [2] proposed efficient routing algorithm for a k-safe
n-cube with up to 2k(n − k) − 1 faulty nodes. Chen et
al [1] also proposed a distributed routing algorithm in hy-
percube with large amount of faulty nodes based on local
subcube-connectivity.

Chen’s algorithm routes two nonfaulty nodes, u and v,
in hypercube with large amount of faulty nodes. The algo-
rithm is based on the local subcube-connectivity: A (k+1)-
cube can be divided to two k-subcubes. In each k-subcube,
if the number of faulty nodes is less than half of the to-
tal number of node in the k-subcube, and all the nonfaulty
nodes keep connected, then all the nonfaulty nodes in the
(k + 1)-cube also keep connected. The job is to find a
minimum k. Then we say the n-cube is a k-subcube con-
nected network. The algorithm routes each address bit of
u to the corresponding bit value of v within a k-subcube.
Therefore, the complexity of the algorithm is O(n2k). If
the faulty nodes are equally distributed, the k will be very
small and the 2k can be treat as a constant value. In such
case, the algorithm will run at O(n). In particular, if there
is no faulty node at all, then k = 0.

A dual-cube is a recently proposed network [6]. A
k-dimensional dual-cube consists of 2k clusters and each
cluster is a (k − 1)-dimensional hypercube. In this paper,
we use m-dual-cube to denote an k-dimensional dual-cube
where m = k − 1. Then the total number of nodes in
an m-dual-cube will be 22m+1. With the same node de-
gree m + 1, the dual-cube contains 2m times more nodes
than the hypercube and, with the same amount of nodes 2n

where n = 2m+ 1, the dual-cube has approximately 50%
less links than the hypercube.

In this paper, based on the algorithm presented in [1], we
give efficient algorithms for fault tolerant routing in dual-

cube networks with a large number of faulty nodes. The al-
gorithms are local-information-based in the sense that each
node knows only its neighbors’ status and no global infor-
mation of the network is required by the algorithm. The
algorithm runs in linear time and builds routing paths of
nearly optimal length. We used a adaptive-subcube tech-
nique in the algorithm’s implementation that selects some
suitable dimensions to form a subcube. This technique
speeds up the routing speed, shortens the path and im-
proves the probability of the successful path construction.
Our simulation results show that, with high percentages of
node failures, the algorithm can build routing paths with a
very high probability.

The remainder of the paper is organized as following.
In the next section, we introduce the dual-cube structure
briefly. Section 3 gives the detailed refinement of the fault-
tolerant routing algorithm in hypercube. Section 4 pro-
poses the new fault-tolerant routing algorithm in dual-cube.
Section 5 discusses the time complexity of the algorithm.
Section 6 does the simulations and presents the experimen-
tal results. The final section concludes the paper.

2 The Dual-Cube Network

A dual-cube uses hypercubes as basic components.
Each hypercube component is referred to as a cluster. As-
sume that the number of nodes in a cluster is 2m. In a
dual-cube, there are two classes with each class consisting
of 2m clusters. The total number of nodes in a dual-cube
m-dual-cube is 2m × 2m × 2, or 22m+1. Each node in
a m-dual-cube has m + 1 links: m links are used within
cluster to construct an m-cube and a single link is used to
connect a node in a cluster of the other class. There is no
link between the clusters of the same class. If two nodes
are in one cluster, or in two clusters of distinct classes, the
distance between the two nodes is equal to its Hamming
distance (the number of bits where the addresses of the two
nodes have different values). Otherwise, it is equal to the
Hamming distance plus two: one for entering a cluster of
the other class and one for leaving.

An (m+1)-connected dual-cube m-dual-cube is an
undirected graph on the node set {0, 1}2m+1 and there
is a link between two nodes u = (u2m . . . u0) and v =
(v2m . . . v0) if and only if the following conditions are sat-
isfied:

1. u and v differ exactly in one bit position i,
2. if 0 ≤ i ≤ m− 1 then u2m = v2m = 0 and
3. if m ≤ i ≤ 2m− 1 then u2m = v2m = 1.

The link connecting two nodes in two clusters of distinct
classes is called cross-link. In the other word, e = (u : v)

is a cross-link if and only if u and v differ in the leftmost
bit position.

Each node in a m-dual-cube is identified by a unique
(2m+1)-bit number, an id. Each id contains three parts:
1-bit class id, m-bit cluster id and m-bit node id. In the
following discussion, we use id = (class id, cluster id,
node id) to denote the node address. The bit-position of
cluster id and node id depends on the value of class id. If
class id = 0 (class id = 1), then node id (cluster id) is the
rightmost m bits and cluster id (node id) is the next (to the
left) m bits.

0
00
00

0
00
01

0
00
10

0
00
11

0
11
00

0
11
01

0
11
10

0
11
11

1
00
00

1
11
00

1
01
00

1
10
00

0
10
00

0
10
01

0
10
10

0
10
11

0
01
00

0
01
01

0
01
10

0
01
11

1
00
11

1
11
11

1
01
11

1
10
11

1
00
01

1
11
01

1
01
01

1
10
01

1
00
10

1
11
10

1
01
10

1
10
10

Class 1Class 0 Class 0

Figure 1: An 2-dual-cube

Figure 1 depicts a DC(2) network. In each node,
class id is shown at the top position. For the nodes of class
0 (class 1), node id (cluster id) is shown at the bottom and
cluster id (node id) is shown at the middle.

The dual-cube has a binary presentation of nodes, simi-
lar to a hypercube, in which two nodes are connected by
a link only if their addresses differ in one bit position.
This feature is the key for designing efficient routing and
communication algorithms in dual-cube. Another impor-
tant feature of a dual-cube is that, within the given bound
to the number of links per node, say m + 1, the network
can have up to 22m+1 nodes. The m-dual-cube topological
properties are given in [4] and the collective communica-
tion schemes in m-dual-cube can be found in [5].

3 Fault Tolerant Routing in Dual-cube

We first show an algorithm for routing in hypercube
with faulty nodes. It will be used as a subroutine for routing
in dual-cube. A path consists of a sequence of nodes where
two adjacent nodes are connected by a link. We use (u : v)
to denote a link connecting nodes u and v, and (u→ v) or
(v1 : v2 : . . . : vr) to denote a path or a cycle.

223

Algorithm 1 (routing cube (m,u, v, k, u class id, u cluster id))
Input routing two nonfaulty nodes u = u1u2 . . . um and v = v1v2 . . . vm in m-cube with k-subcube;

u class id and u cluster id are class id and cluster id of the m-cube, respectively;
Output (w, PC): if success, w = v and PC = (u→ v)− {v}; or report failure with w = −1;
Begin

PC = empty;
D = {1, . . . ,m}; /* D: a set of dimensions which can be used for routing */
w = u; /* w = w1w2 . . . wm */
for i = 1 to m− k do {

if (there is a dimension j ∈ D such that wj 6= vj) { /* i.e., wj = vj */
D = D − {j}; /* delete j from D, j is the dimension along with which we are routing in current iteration */
(t, C) = routing k subcube (m,w, v, k, j,D, 1, u class id, u cluster id, ∗); /* route jth bit of w */
if (t 6= −1) {

PC = PC : C; /* jth bit routed, add path C to PC */
w = t;

} else { return (−1, PC); } /* cannot route in k-subcube */
}

}
if (w 6= v) { /* route the last k bits */

(t, C) = routing k subcube (m,w, v, k, ∗, D, 0, u class id, u cluster id, ∗); /* route w → v */
if (t = v) {

PC = PC : C; /* routed; add path to PC */
w = t;

} else { return (−1, PC); } /* cannot route in k-subcube */
}
return (w, PC); /* path constructed */

End

Chan [1] introduced the concept of locally subcube-
connected hypercube. An m-cube is locally k-subcube-
connected network if, in each k-subcube, k ≤ m, less than
half of the nodes in k-subcube are faulty and the nonfaulty
nodes of the k-subcube make a connected graph.

We use a binary string b1b2 . . . bm to label a node
where each bi is either 0 or 1. A k-subcube has 2k

nodes whose addresses differ in the right-most k bits.
The address of a node in the k-subcube is of the form
b1b2 . . . bm−kxm−k+1 . . . xm, where b1b2 . . . bm−k is the
(m − k)-bit id of the k-subcube and xm−k+1 . . . xm is the
k-bit id within the k-subcube.

Suppose we have two nonfaulty nodes u = u1u2 . . . um
and v = v1v2 . . . vm. To construct a path u → v, we route
each bit ui of u to vi, for i = 1, 2, . . . ,m− k. After i− 1
bits are routed, a node w in the path has an address of w =
w1w2 . . . wm with wj = vj for j = 1, 2, . . . i − 1. If the
node w1 . . . wi−1viwi+1 . . . wm is faulty when routing the
ith bit, we try to route w to a node

s = w1 . . . wi−1wiwi+1 . . . wm−kxm−k+1 . . . xm
in the k-subcube. If

s′ = w1 . . . wi−1viwi+1 . . . wm−kxm−k+1 . . . xm
is nonfaulty, then the ith bit is routed and the path is (u →

w → s : s′). Let w = s′ and route the next bit until the
first m − k bits are routed. Finally, we route w to v in the
k-subcube.

The algorithm described above uses the “basic” k-
subcube of form b1b2 . . . bm−k ∗ ∗ . . . ∗. We revised this
basic algorithm to allow to use other k bits than the “most-
right” k bits for routing in k-subcube. We divide m bits
of a node address into two sets. The 1st set contains those
bits already routed and the 2nd set contains the other bits
which can be changed for routing. In the k-subcube rout-
ing, we select k bits from the 2nd set in such a way that
those bits on which the current node w and the destination
node v have different values will be used first. We call this
method adaptive-subcube routing. The benefit of adaptive-
subcube routing is that when we route the ith bit, the bits
to be routed later can be done in the current iteration. This
method not only speeds up the routing but also shortens the
path and consequently increase the probability of the suc-
cessful routing. The adaptive-subcube routing gets a sig-
nificant performance improvement which we will show in
Section 4.

The algorithm for construct u → v in an m-cube is
shown in Algorithm 1 (routing cube). Note that the al-

224

Algorithm 2 (routing k subcube (m,u, v, k, j,D, c, u class id, u cluster id, d cluster id))
Input two nodes u = u1u2 . . . um and v = v1v2 . . . vm in m-cube, routing with k-subcube;

u class id and u cluster id are class id and cluster id of the m-cube, respectively;
D: a dimension set that can be used for routing;
if c = 0, routing u→ v; return node r = v;
if c = 1, routing jth bit of u with k-subcube; return node r, where rh = vh for h ∈ ({1, . . . , n} −D) (including j);
if c = 2, finding u→ s : s′ → t : t′; return node r = t′;
if c = 3, finding u→ w : w′ → s : s′ → t : t′; return node r = t′;
d cluster id is the cluster id of the final destination node, used in c = 2 and c = 3;

Output: (r, C); r: as described above. if cannot find r, return r = −1;
if r is found, C = (u→ r)− {r}, a path (u→ r) but does not contain r;

Begin
r = −1; C = empty;
for each node x ∈ m-subcube do { color[x] = WHITE; }
Q = empty; color[u] = GRAY; enqueue(Q, u); prede[u] = NULL;
while (Q 6= empty)) {

x = head[Q]; s = x; w = x; /* x = x1x2 . . . xm */
case (c = 0) /* routing u→ v */

if (x = v) { C = u→ x; return (v, C); }
case (c = 1) /* routing jth bit of u with k-subcube */

r = x1x2 . . . xj−1xjxj+1 . . . xm;
if (getid(u class id, u cluster id, r) is nonfaulty) { C = u→ x; return (r, C); }

case (c = 2) /* finding u→ s : s′ → t : t′ */
if (getid(u class id, s, u cluster id) is nonfaulty) { /* s′ is nonfaulty */

(t, PC) = routing cube (m, u cluster id, d cluster id, k, class id, s); /* PC = s′ → t */
if (t 6= −1) AND (getid(u class id, d cluster id, s) is nonfaulty) { /* t : t′ */

C = u→ s : PC;
return (s, C); /* C = u→ s : s′ → t : t′ */

}
}

case (c = 3) /* finding u→ w : w′ → s : s′ → t : t′ */
if (getid(class id, w, u cluster id) is nonfaulty) { /* w′ is nonfaulty */

D = {1, . . . ,m}; /* D: a set of dimensions which can be used for routing */
(t′, C) = routing k subcube (m, u cluster id, ∗, k, ∗, D, 2, class id, w, d cluster id);
if (t′ 6= −1)) { /* t : t′ */

C = u→ w : C;
return (t′, C); /* C = u→ w : w′ → s : s′ → t : t′ */

}
}

i = 0; /* add neighbors of x to queue */
reorder(m,x, v,D); /* reorder D so that the dimensions at which x and v have different values are checked first */
while (i < k) {

y = x xor 2D[i]; /* select a neighbor of x using re-ordered D */
if (getid(u class id, u cluster id, y) is nonfaulty) AND (color[y] = WHITE) {

enqueue(Q, y); prede[y] = x;
}
i = i+ 1;

}
dequeue(Q); color[x] = BLACK;

}
return (r, C);

End

225

Algorithm 3 (routing dualcube (m, u, v, k))
Input routing two nonfaulty nodes u and v in an m-dual-cube with k-subcube;

u = (u class id, u cluster id, u node id);
v = (v class id, v cluster id, v node id).

Output: a path u→ v or report failure
Begin

if (u class id = v class id) AND (u cluster id = v cluster id) { /* Case 1: u and v are in same cluster, PD = u→ v */
return routing cube (m, u node id, v node id, k, u class id, u cluster id);

} else {
D = {1, . . . ,m}; /* D: a set of dimensions which can be used for routing */
if (u class id = v class id) { /* Case 2: u and v are of same class, path = u→ s : s′ → t : t′ → v */

(t′, PC1) = routing k subcube (m, u node id, ∗, k, ∗, D, 2, u class id, u cluster id, v cluster id);
} else { /* Case 3: shortest path = u→ t : t′ → v or path = u→ w : w′ → s : s′ → t : t′ → v */

(t′, PC1) = routing cube (m, u node id, v cluster id, k, u class id, u cluster id); /* shortest path */
if (t′ = −1)

(t′, PC1) = routing k subcube (m, u node id, ∗, k, ∗, D, 3, u class id, u cluster id, v cluster id);
}

}
if (t′ 6= −1) {

(w, PC2) = routing cube (m, t′, v node id, k, v class id, v cluster id);
if (w 6= −1) return (PC1 : PC2); /* path constructed */

}
return failure;

}
End

gorithm will be used for fault tolerant routing in dual-
cube. Nodes u and v are identified by the node id field in
the dual-cube. Therefore, when routing in k-subcube and
checking the faultiness of a node, a (2m + 1)-bit address
should be used. This is done by getid(class id, cluster id,
node id). See algorithm 2 (routing k subcube).

Algorithm 2 uses a breadth first search strategy. There
are four cases in Algorithm 2. For the hypercube routing,
Algorithm 1 uses case 0 and case 1. The case 1 routes a
bit j of node w and the case 0 routes w to v. The cases
3 and 4 are for dual-cube routing which will be discussed
in the next section. In order to adopt the adaptive-subcube
routing, we use D to keep the dimensions which contains
the bits not yet routed. Once a bit i is routed, i is deleted
from D. The breadth first search algorithm uses a queue
to hold nodes and adds the neighbors of the head node into
the queue. Only the neighbors in dimensions in D are al-
lowed to be added to queue. Suppose we are routing the ith
dimension of a node w. We want those neighbors whose
ith bit have the same value as the destination node v to be
searched first. Therefore, we re-order D before it is used
for selecting neighbors of the head node in queue.

The routing algorithm in dual-cube is shown in Algo-
rithm 3 (routing dualcube (m, u, v)). We want to construct
a path from node u and node v. There are three cases, dis-

tinguished by the locations of the nodes u and v. In Case 1,
u and v are in a same cluster. This is the simplest case and
we apply the routing cube algorithm directly. Note that if
the routing within the cluster is not successful, there may
exist a path by going through other clusters.

In Case 2, u and v are in different clusters of the same
class. The path u → v must go through a cluster of the
other class. We route u to a node, say s, such that there is
path s′ → t and t′ in the cluster of v is nonfaulty. Then we
route t′ to v. Note that s ans u may be the same node.

In particular, assume that u and v are of class 0, then the
routing path is shown below with full address format.

class id cluster id node id
u = (0, u cluster id, u node id)

finding s = (0, u cluster id, s node id)
s′ = (1, s node id, u cluster id)

routing to t = (1, s node id, v cluster id)
t′ = (0, v cluster id, s node id)

routing to v = (0, v cluster id, v node id)

The algorithm first calls “routing k subcube” (Algo-
rithm 2) to find a node s and route s′ to t (the case 2 in
Algorithm 2). Then it calls “routing cube” (Algorithm 1)
to route t′ to v.

226

Assume that u and v follow the uniform distribution.
Let pi be the probability that nodes u and v are in Case i,
for i = 1, 2, and 3. Then p1 = 2m/22m+1, where 22m+1 is
the total number of nodes in the m-dual-cube; p2 = 1/2−
p1; and p3 = 1/2. Let ti be the time required for Case i
routing. Then the expected total time t =

∑3
i=1 ti × pi.

We have t1 = m2k assuming that the m-cube is lo-
cally k-subcube connected; In Case 2, the first step of the
algorithm is to find a node s in k-subcube such that s′ is
nonfaulty. That is, this step routes u in the most-left bit
(class id). It takes 2k time. Then in the second step, the
algorithm routes s′ to t in the cluster of s′ (an m-cube) and
check the faultiness of the node t′. It takes m2k time. In
the last step, it routes t′ to v in the m-cube the node v is
located. Therefore, t2 = 2km2k +m2k.

In Case 3, the algorithm tries to route the first part
(node id field in an m-cube) of the shortest path. It takes
m2k time. Let pshortest be the probability the shortest path
is constructed. If it is not successful, the algorithm routes
u to v by going through other two clusters. We first route
u in the class id bit in the k-subcube. It takes 2k time. If it
fails, then algorithm stops. If it successes, the rest steps are
just the same as that of Case 2. Therefore, t3 = m2k+(1−
pshortest)(2k+2km2k)+m2k ≤ m2k+2k+2km2k+m2k.

The running time of the algorithm, as discussed above,
is bounded by O(

∑3
i=1 ti × pi) = O(m22k). Compared

to the running time in hypercube, the additional 2k item
comes from the time for finding s in Case 2 or Case 3.

4 Experimental Results

We have performed the simulations to verify the effi-
ciency of the proposed algorithm based on uniform prob-
ability distribution of node failures. We assume that each
node has an equal and independent failure probability pf .
Seven m-dual-cubes (m = 3, 4, 5, 6, 7, 8, 9) with
k = 3, 4, 5, and m are simulated. For each dual-cube,
we change the node failure probability pf from 0% to 90%,
steped by 10%. We tested 10,000 times to get the average
results. Both the fixed-subcube and the adaptive-subcube
versions are simulated.

From the analysis of the previous section, we knew that
the running time of the algorithm is bounded by O(m22k).
It is expected that the path can be constructed with high
probability even with a small k-subcube. Fig. 2 shows the
performance improvement of the adaptive-subcube version
compared to the fixed-subcube version.

Speedup =
Routing success rate with adaptive-subcube

Routing success rate with fixed-subcube

It can be seen that the speedup increases as the size of
dual-cube increases. More importantly, this technique has

100
102
104
106
108
110
112
114
116
118

3 4 5 6 7 8 9

Sp
ee

du
p

of
se

le
ct

iv
e-

su
bc

ub
e

(%
)

m-dual-cube

k = 3
k = 4
k = 5

Figure 2: Speedup of adaptive-subcube

the obvious performance improvement on small k, which
is what we expected. In what follows, we only show the
performance of routing with the adaptive-subcube.

The simulations were done for m = 5, 7, and 9, and for
k = 3, 4, and 5. Let pf (%) be the node failure probability.
We tested pf = 0 to 90 percent, stepped by 10 percent. For
a given pf , the expected total number of faulty nodes in
an m-dual-cube is 22m+1 × pf . Let ps(%) be the ratio of
the number of times in which a routing path is successfully
constructed for a given pair of nodes by our algorithm over
the total number of tested pairs of nodes. Let ep(%) be the
average ratio of the length of the constructed routing path
over the length of shortest path of the given two nodes.

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90

R
at

e
of

su
cc

es
sf

ul
ro

ut
in

g
(p
s
)

Probability of node failures (pf)

k = 7
k = 5
k = 4
k = 3

Figure 3: Successful routing rate (m = 7)

Fig. 3 depicts the ps for routing in a 7-dual-cube (32,768
nodes). As the k becomes larger, the ps increases. This is
because that a larger dimension k of k-subcubes can make
better connectivity of the dual-cubes. We can see that ps
becomes low very quickly when the pf is larger than 40%.

227

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90

Pa
th

pl
us

(%
)

Probability of node failures (pf)

k = 3
k = 4
k = 5

Figure 4: Ratio of path plus (m = 7)

We simulated 7 dual-cubes with different m and we found
that, for a given k, the dual-cubes with different sizes (m)
have almost the same performance.

Fig. 4 depicts the ep(%) for a 7-dual-cube. When the
pf is larger than 50% (k = 3), or 60% (k = 4 and 5), the
ep(%) decreases as the pf increases. The reason is that
those routings that require a large number of extra nodes
fail; while the figure shows only the successful cases.

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge
k

of
k

-s
ub

cu
be

(k
)

Probability of node failures (pf)

m = 8
m = 7
m = 6
m = 5
m = 4

Figure 5: Average k of k-subcube

The results presented above are obtained by a fixed k
for routing in the k-subcube. We also developed another
program that starts from k = 0 and automatically increases
k until a path is successfully constructed or k reached its
maximum value m. Fig. 5 gives the average k of the k-
subcube for dual-cubes with m = 4, 5, 6, 7 and 8. The k
increases as the pf increases but, depending on m, after pf
reaches to a value between 0.6 and 0.7, it starts to decrease.
Again, this is because that those routings requiring larger k
failed due to the high probability of node failures.

5 Concluding Remarks

In this paper, we gave a fault-tolerant routing algorithm
in dual-cube with a large amount of faulty nodes. The al-
gorithm requires only local information about the status of
failures and runs at nearly linear time. The simulations
were also performed. The results show that the dual-cube
has excellent capacity for fault-tolerant routing with a large
amount of faulty nodes. However, when the probability of
node failures is above 30%, the rate for successful routing
drops fast. It is interesting to find other efficient routing
algorithm in dual-cube that can tolerate even higher node
failure rate with an acceptable successful routing rate.

References

[1] Jianer Chen, Guojun Wang, and Songqiao Chen. Lo-
cally subcube-connected hypercube networks: Theo-
retical analysis and experimental results. IEEE Trans-
actions on Computers, 51(5):530–540, May 2002.

[2] Q-P Gu and S. Peng. Unicast in hypercubes with large
number of faulty nodes. IEEE Transactions on Parallel
and Distributed Systems, 10:964–975, October 1999.

[3] J. P. Hayes and T. N. Mudge. Hypercube supercom-
puters. Proc. IEEE, 17(12):1829–1841, Dec. 1989.

[4] Y. Li and S. Peng. Dual-cubes: a new interconnection
network for high-performance computer clusters. In
Proceedings of the 2000 International Computer Sym-
posium, Workshop on Computer Architecture, pages
51–57, ChiaYi, Taiwan, December 2000.

[5] Y. Li, S. Peng, and W. Chu. Efficient collective com-
munications in dual-cube. In Proceedings of the Thir-
teen IASTED International Conference on Parallel and
Distributed Computing and Systems, pages 266–271,
Anaheim, USA, Aug. 2001.

[6] Yamin Li, Shietung Peng, and Wanming Chu. Efficient
collective communications in dual-cube. The Journal
of Supercomputing, 28(1):71–90, April 2004.

[7] W. Najjar and J. L. Gaudiot. Network resilience: A
measure of network fault tolerance. IEEE Transactions
on Computers, 39(2):174–181, Feb. 1990.

[8] SGI. Origin2000 Rackmount Owner’s Guide, 007-
3456-003. http://techpubs.sgi.com/, 1997.

[9] L. W. Tucker and G. G. Robertson. Architecture and
applications of the connection machine. IEEE Com-
puter, 21:26–38, August 1988.

228

