
The IASTED International Conference on Parallel and Distributed Computing and Systems, Marina del Rey, CA, USA, November 3–5, 2003, pp.43–50

Disjoint Paths in Metacube
Yamin Li, Shietung Peng

Department of Computer Science
Hosei University

Tokyo 184-8584 Japan

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

ABSTRACT
A new interconnection network with low-degree for very
large parallel computers called metacube (MC) has been
introduced recently. The MC network has short diameter
similar to that of the hypercube. However, the degree of
an MC network is much lower than that of a hypercube
of the same size. More than one hundred of millions of
nodes can be connected by an MC network with up to 6
links per node. The MC network has 2-level cube structure.
An MC(k,m) network that connectsp= 2m2k+k nodes with
m+k links per node has two parameters,k andm, wherek
is the dimension of the high-level cubes (class-cubes) and
m is the dimension of the low-level cubes (clusters). In
this paper, we describe an efficient algorithm for finding
disjoint paths in MC networks. We show that, for any two
distinct nodesu andv in an MC(k,m), k+m disjoint paths
from u to v can be found inO(log2 p) time. The length of
the paths is at mostH(s, t) + 2k + m+ 5, whereH(s, t) is
the Hamming distance betweens andt. The result implies
that a fault-free path between any two nonfaulty nodes can
be found in an MC(k,m) with up tom+k−1 faulty nodes.

KEY WORDS
Interconnection networks, hypercube, disjoint paths, fault-
tolerance

1 Introduction

The hypercube has been widely used as the interconnec-
tion network in a wide variety of parallel systems such as
Intel iPSC [11], the nCUBE [3], the Connection Machine
CM-2 [10], and SGI Origin 2000 [4] [9]. Ann-dimensional
hypercube (n-cube) contains 2n nodes and hasn edges per
node. If uniquen-bit binary addresses are assigned to the
nodes of ann-cube, then an edge connects two nodes if and
only if their binary addresses differ in a single bit. Because
of its elegant topological properties and the ability to em-
ulate a wide variety of other frequently used networks, the
hypercube has been one of the most popular interconnec-
tion networks for parallel computer systems.

However, the number of edges per node increases log-
arithmically as the total number of nodes in the hypercube
increases. Currently, the practical number of links is lim-
ited to about eight per node [9]. If one node has one pro-
cessor, the total number of processors in a parallel system

with ann-cube connection is restricted to several hundreds.
Therefore, it is interesting to develop an interconnection
network which will link a large number of nodes with a
small number of links per node while retaining most of the
hypercube’s topological properties.

Several variations of the hypercube have been pro-
posed in the literature. Those focused on reduction of the
number of edges of the hypercube include cube-connected
cycles [8], reduced hypercube [12] and the hierarchical cu-
bic network [1]. However, none of them can provide the
flexibility that the metacube supports. On practical side,
a parallel computer Origin2000 [4] [9] is constructed with
the hypercube-like structure. Origin2000 reduces the num-
ber of links required by introducingCray Routerto con-
nect hypercubes (clusters). A Cray Router is the high level
router that does not connect processors directly. The pro-
cessors are attached to regular routers within the clusters.
Each regular router has six links. Two links connect two
nodes; each node contains two processors. Three links are
3-cube edges and a CrayLink connects to a Cray Router.

Recently, Y. Li et al. introduced a new interconnec-
tion network, calledmetacube, or MC network [7]. The
MC network shares many desirable properties of the hy-
percube (e.g., the key property of the hypercube, low di-
ameter etc.) and can be used as an interconnection net-
work for a parallel computer system of almost unlimited
size with just a small number of links per node. For exam-
ple, an MC(2,3) with 5 links per node has 16384 nodes and
an MC(3,3) with 6 links per node has 227 = 134,217,728
nodes. The number of nodes connected by the MC is much
larger than that of the HCN or the RH with the same amount
of links per node. The CCC uses only 3 links per node.
However, because of its ring structure, the diameter or the
length of the routing path in CCC is about twice of that
of the hypercube. Compared with the CCC, the MC has
shorter diameter, length of the routing path, and the broad-
casting time. With metacube architecture, the Origin2000
can connect much more processors directly without using
any Cray Router. Note that there is no need to modify any
hardware circuit of the Origin2000; what we need to do is
to connect router board ports with link cables in metacube
topology.

In this paper, we give efficient algorithms for finding
disjoint paths in metacube. The remainder of this paper
is organized as follows. Section 2 introduces the MC net-
work, its topological properties, and a point-to-point rout-

43

ing algorithm in the MC network. Section 3 gives the algo-
rithm for findingm+k disjoint paths between two distinct
nodes in an MC(k,m). Section 4 concludes the paper and
presents some future research directions.

2 Preliminaries

The MC network is motivated by the dual-cube network
proposed by Li and Peng [5] [6] that mitigates the port lim-
itation problem in the hypercube network so that the num-
ber of nodes in the network is much larger than that of the
hypercube with a fixed amount of link per node. The MC
network includes the dual-cube as a special case. An MC
network has a 2-level cube structure: high-level cubes rep-
resented by the leftmostk bits of the binary address of the
node which containsm2k + k bits (thesek bits serve as a
class indicator), and low-level cubes, called clusters that
form the basic components in the network, represented by
them bits of the remainm2k bits, which occupy the differ-
ent portions in them2k bits for different classes.

More specifically, there are two parameters in an MC
network,k andm. An MC(k,m) containsh = 2k classes.
Each class contains 2m(h−1) clusters, and each cluster con-
tains 2m nodes. Therefore, an MC(k,m) usesmh+ k bi-
nary bits to identify a node and the total number of nodes
is 2n wheren = mh+ k. The value ofk affects strongly
the growth rate of the size of the network. An MC(1,m)
containing 22m+1nodes is called adual-cube. Similarly, an
MC(2,m), an MC(3,m) and an MC(4,m) containing 24m+2

nodes, 28m+3 nodes and 216m+4 nodes are calledquad-cube,
oct-cubeand hex-cube, respectively. Since an MC(3,3)
contains 227 nodes, the oct-cube is sufficient to construct
practically parallel computers of very large size. The hex-
cube is of theoretical interest only. Note that an MC(0,m)
is a hypercube.

A node in an MC(k,m) can be uniquely identified by
a (mh+ k)-bit binary number. The leftmostk-bit binary
number defines a class of the node (classID). There areh
classes. In each class, there are 2mh nodes and each node
is represented by amh-bit binary number. 2m nodes of the
same class form a cluster. Therefore, there are 2m(h−1) clus-
ters in each class. Anm-bit binary number, located in a
special portion of themh-bit (will be explained in the next
paragraph) identifies a node within the cluster (nodeID).
Therefore, the (mh+k)-bit node address in an MC(k,m) is
divided into three parts: ak-bit classID, an m(h− 1)-bit
clusterIDand anm-bit nodeID.

In the following discussion, we useu = (cu,Mu[h−
1], . . . ,Mu[1],Mu[0]) to denote theID of nodeu, wherecu is
ak-bit binary number andMu[i], 0≤ i ≤ h−1 arem-bit bi-
nary numbers. LetclassID(u) = cu, nodeID(u) = Mu[cu]×
2cu andclusterID(u) = ∑0≤i≤h−1, i 6=cu Mu[i]×2i . The mh-
bit numbernodeID(u)+clusterID(u) is a unique identifier
of nodeu in classcu. For example,u = 0100111000 in
an MC(2,2) is denoted as node 56 of class 1 and node set
(48,52,56,60) in class 1 forms a cluster withclusterID=
48. Fig. 1 shows the format of a node address for an

MC(k,m).

k bits mbits m bits m bits

mhbits (h = 2k)

c M[h−1] M[1] M[0]. . .

01h−1hField:

Figure 1. Format of a node address for an MC(k,m)

The links of an MC(k,m) is constructed in the follow-
ing manner. Them-bit field M[c] in the address of a node
of classc forms a low-levelm-cube withm links, namely
cube-edge. Theselow-level m-cubes are calledclusters. A
cluster containing nodeu is denoted asCu. The links that
connect nodes among clusters are calledcross-edgesand
are defined as following. For any two nodes whose ad-
dresses differ only in a bit position in the class field, there
is a cross-edge connecting these two nodes. That is, thek-
bit field c forms ahigh-level k-cube which connects those
nodes whose addresses except class field are the same. The
high-levelk-cube is calledclass-cube.

The addresses of two nodes connected by a cross-
edge differ only on one bit position within thek-bit
class field and there is no direct connection among the
clusters of the same class. Therefore, a node in an
MC(k,m) has m + k links: m links construct anm-
cube cluster andk links construct ak-cube. For ex-
ample, the neighbors in the cluster of the node with
address (01,111,101,110,000) in an MC(2,3) have ad-
dresses (01,111,101,111,000), (01,111,101,100,000) and
(01,111,101,010,000). The underlined bits are those that
differ from the corresponding bits in the address of the ref-
erenced node. The two neighbors in the high-level cube are
(00,111,101,110,000) and (11,111,101,110,000).

Fig. 2 shows the structure of an MC(2,2), where the
clusters in the same square are of the same class. The dec-
imal numbers arenodeID+clusterID. In Fig. 2, there are
22(22−1) = 64 clusters in each square and each cluster is a
2-cube. The figure shows only 4 high-level cubes, each of
which contains a distinct node in the cluster 0 of the class
0.

The problem of finding a path from a source nodes
to a destination nodet, and forwarding messages along the
path is known as the point-to-point routing problem. It is
the basic problem for any interconnection network. We de-
scribe briefly below the point-to-point routing algorithm in
metacube [7]. This algorithm is the building block for find
disjoint paths in metacube.

We adopt the following notation. In the metacube
MC(k,m), each node hasm+ k neighbors. Lets(i), 0 ≤
i ≤ k−1, be theith dimensional neighbor of nodes within
the k-cube, that is, the addresses ofs ands(i) differ in the
ith bit position (the rightmost bit is the 0th bit) in the class
field c. Let s(i+k), 0≤ i ≤ m− 1, be theith dimensional

0 1

2 3

0 4

8 12

252 253

254 255

243 247

251 255

0 16

32 48

0 64

128 192

207 223

239 255

63 127

191 255

1 17

33 49

1 65

129 193

2 18

34 50

2 66

130 194

3 19

35 51

3 67

131 195

4 5

6 7

1 5

9 13

8 9

10 11

2 6

10 14

12 13

14 15

3 7

11 15

class 0 class 1

class 2 class 3

Figure 2. A metacube MC(2,2)

neighbor of nodes in them-cube, that is, the addresses ofs
ands(i+k) differ in the ith bit position in the fieldM[c]. Let
s(i, j) = (s(i))(j) for 0≤ i, j ≤m+k−1. We use(u→ v) to
denote a path from nodeu to nodev. If the length of a path
(u→ v) is 1 (through a single edge), the path is denoted as
(u : v), and the edge is denoted as(u,v).

In a graphG= (V,E) whereV is the set of all vertices
(nodes) andE is the set of all edges inG, let P′ = (v0→
vh−1) = (v0 : v1 : . . . : vh−1) be a path from nodev0 to node
vh−1, wherevi ∈V for 0≤ i ≤ h−1 and edge(v j−1,v j)∈E
for 1≤ j ≤ h−1. We sayP′ is aHamiltonian pathif (1) P′

contains every node inV and (2) nodesvi (0≤ i ≤ h−1) are
all distinct. LetP= (v0→ vh) = (P′ : vh), wherevh = vi , for
i = 0,1, . . ., or h−2. If vh = v0, thenP becomes aHamilto-
nian cycle1; otherwise, we callP a extended-Hamiltonian
path. The length of a Hamiltonian path in ak-cube is
2k− 1; the length of a Hamiltonian cycle or an extended
Hamiltonian path is 2k. Let a weak-Hamiltonian pathbe

1A Hamiltonian cycle is defined as a path through a graph which starts
and ends at the same vertex and includes every other vertex exactly once.

a Hamiltonian path, a Hamiltonian cycle, or an extended-
Hamiltonian path. The following lemma [7] is needed for
the routing algorithm.

Lemma 1. Given any two nodes s and t in an n-cube, there
exists a weak-Hamiltonian path from s to t.

Since we can modify only a small portion (m bits) by
cube-edges, we need to move to clusters of distinct classes
(along cross-edges) to modify the other portions of theID.
We also need to arrange the order of nodes on the path so
that the last portion modified is thenodeIDof t or its neigh-
bor. Since there areh classes, the efficient way to do this is
by following a weak Hamiltonian path fromcs (class num-
ber of nodes) to ct (class number of nodet) in thek-cube.

For each nodeu in the k-cube, letnext(u) be the
node next tou in the weak-Hamiltonian path fromcs to
ct . Let the node addresses ofs and t be (cs,Ms[h−
1], . . . ,Ms[1],Ms[0]) and(ct ,Mt [h−1], . . . ,Mt [1],Mt [0]), re-
spectively. For the routing within anm-cube of classc,
we can follow theascending routingstrategy, by which the

least significant non-zero bit of(Ms[c]⊕Mt [c]) is chosen
as the first dimension for routing, and so on. The routing
algorithm in an MC(k,m) is given below. Theloop will ter-
minate when thebreak is executed. Notice that the details
of routing in them-cube is omitted in the algorithm.

Algorithm 1 (p1(m,k,s, t))
begin /* build a pathp1 froms to t in MC(k,m) */

u = cs; v = s; p1 = v;
loop always

w = (u,Mv[h−1], . . . ,Mv[u+1],Mt [u],
Mv[u−1], . . . ,Mv[0]); /* Ms[u]→Mt [u] */

if w 6= v, then p1 = (p1→ w);
if w = t, then break;
v = w;
w = (next(u),Mv[h−1], . . . ,Mv[u+1],Mv[u],

Mv[u−1], . . . ,Mv[0]); /* u→ next(u) */
p1 = (p1 : w);
u = next(u);

endloop
end

Example 1. In an MC(2,3), let s = 00000000000000
andt = 00001110101011. The weak-Hamiltonian path for
(cs→ ct) in the high-level 2-cube is a Hamiltonian cycle,
(00 : 01 : 11 : 10 : 00) for instance. The routing inside clus-
ters may start from any dimension. The path can be
00000000000000 : 00000000000001 : 00000000000011 :
01000000000011 : 01000000001011 : 01000000101011 :
11000000101011 : 11001000101011 : 10001000101011 :
10001010101011 : 10001110101011 : 00001110101011.

In the case of a Hamiltonian cycle, the parameter
next(s) give the direction of the Hamiltonian cycle. For
example, in Example 1, if we letnext(s) = 10, then the
Hamiltonian cycle for(cs→ ct) in the high-level 2-cube
will be (00 : 10 : 11 : 01 : 00).

Let Hi(s, t), 0 ≤ i ≤ h− 1, be the Hamming dis-
tance betweens and t in M[i], i.e. the number of bits
with distinct values inMs[i] and Mt [i]. From the algo-
rithm, the longest length of the routing path is 2k+Hh(s, t),
whereHh(s, t) = ∑h−1

i=0 Hi(s, t). This formula gives an up-
per bound tod(s, t), the distance betweens and t in an
MC(k,m). Let H(s, t) be the Hamming distance between
s andt. Clearly, we haveH(s, t) ≤ d(s, t) ≤ Hh(s, t)+ 2k.
BecauseH(s, t) = Hh(s, t)+ Hk(s, t), whereHk(s, t) is the
Hamming distance betweens and t in c field, we have
H(s, t)≤ d(s, t)≤ H(s, t)−Hk(s, t)+2k. The longest path
in an MC(k,m) is from s = 0· · ·0 to t, wherect = 0· · ·0
andMt [i] = 1· · ·1 for all i, 0≤ i ≤ h− 1. The length of
this path is 2k(m+1). It is easy to see that this path is the
shortest path for connectings andt. Therefore, it is the di-
ameter of an MC(k,m). Since the average distance in each
cluster ism/2, the average distance between any two nodes
in an MC(k,m) is at most(m/2)2k + 2k = (n− k)/2+ 2k,
wheren = m2k + k (in the case of Hamiltonian path, it is
(n−k)/2+2k−1). Notice that it is possible to have a rout-
ing algorithm in an MC(k,m) which bypasses the classc if

Ms[c] = Mt [c]. In such a case, the length of the routing path
for somesandt might be shorter than that produced by the
algorithm above. We put these results into the following
theorem.

Theorem 1. In an MC(k,m), let d(s, t) and davg(s, t) be the
distance and the average distance between any two nodes
s and t, respectively. Let H(s, t) be the Hamming distance
between s and t. Then d(s, t) ≤ H(s, t)−Hk(s, t)+ 2k and
davg≤ (n− k)/2+ 2k, where Hk(s, t) is the Hamming dis-
tance between s and t in the class field. The diameter of an
MC(k,m) is2k(m+1).

3 Disjoint Paths in Metacube

In this section, we will describe an algorithm for finding
k+ m disjoint paths from a source nodes to a destination
nodet in MC(k,m). For a nodeu in an MC(k,m), we denote
u(i), 0≤ i ≤ k−1, as global neighbors; andu(k+ j), 0≤ j ≤
m− 1, as local neighbors. The ideas for constructing the
disjoint paths froms to t are

1. The local neighbor ofs will be connected to the lo-
cal neighbor oft and the global neighbor ofs to the
global neighbor oft.

2. The locality betweensandt is to be considered while
constructing the disjoint paths. First, consider the
case thats andt are in the same cluster. Second,s
andt are in the clusters of the same class. Third,s
andt are in the clusters of different classes.

The first case is the simplest one. Thek paths are
constructed such thats(i) is connected tot(i), 0≤ i ≤ k−1,
through distinct clusters of the same class. Them paths
are constructed inside the cluster using the hypercube algo-
rithm.

In the second case thats andt are in the distinct clus-
ters of the same class, a problem for constructing the dis-
joint path is as follows. WhenMs[u] = Mt [u] for some
u, 0 ≤ u ≤ 2k − 1, the path(s→ t) will just advance
through the cross-edges of a hamiltonian path and do noth-
ing. This will cause two paths along the distinct dimen-
sions in thek-cube to intersect at some vertex. For exam-
ple, in an MC(2,2), two paths froms= 0000000000 tot =
1111000000 along different class-paths(00 : 01 : 11) and
(00 : 10 : 11) will meet at a common vertex 1100000000
before reacht. To guarantee thek paths are disjoint while
using hamiltonian cycles to modify theM[∗] fields, we
adopt the idea ofsignature. We assign each path a unique
signature defined through akey-bit. A key-bit is a bit
in a node address. It will be assigned to each of thek
neighbors of nodes, s(i), 0≤ i ≤ k− 1, a signature that
is unique to the path through that neighbor before apply-
ing the point-to-point routing algorithm using a Hamilto-
nian cycle. If we say “the key-bit is at the dimension
x”, it means that we will negate the value of the key-bit
of a node to get the address of that nodes’xth dimen-
sional neighbor. Thek + m dimensions of an MC(k,m)

are 0,1, . . . ,k− 1,k,k+ 1, . . . ,k+ m− 1, where the firstk
dimensions are in the class fieldcu and the nextm dimen-
sions are in the fieldM[cu], counted from right to left. The
key-bit is a bit inM[cu] defined in a way that the path holds
a unique bit-pattern ofM[cu] after negating that bit.

We usec(i)
s and c(i)

t to denotecs(i) and ct(i) , respec-
tively. The key-bit can be determined as below. For the
ith disjoint path (0≤ i ≤ k− 1), if we can find a bit so

that Ms[c
(i)
s] and Mt [c

(i)
t] in that bit have the same value,

then let that bit be the key-bit (type1); otherwise, take any
bit as the key-bit (type2). The idea behind this is to en-
force a signature (negating the key-bit value) before apply-
ing the point-to-point routing algorithm. For theith disjoint
path (k≤ i ≤ m+ k−1), theith bit can serve as a key-bit
since it is unique to the pathPi throughs(i) except the case

H(Ms[cs],Mt [ct]) = 1. If M(j)
s [cs] = Mt [ct] then the bit j

cannot be used as a key-bit sinceMt [ct] is no longer unique
to the path throughs(j). Therefore, in our algorithm, we let
Pj goes throughs(j, j ′) for some j ′,k≤ j ′ ≤m+ k−1, and
then connected tot(j ′). The PathPj ′ will go throughs(j ′)

and then connected tot(j). After completing the hamilto-
nian cycle, them paths will be back to the clusterCt . Let
the node forPi after completing the hamiltonian cycle be
wi (wi differs with t in field M[ct] only). Then, the subpaths
wi → t should be disjoint paths inCt . This can be done
through algorithm 3 withn = m.

In the last case thatsandt are in the clusters of differ-
ent classes, for constructing thek disjoint path, we connect
s(i) to t(i), 0≤ i ≤ k−1. This is done through two two sub-
paths,s(i)→wi andwi → t, wherewi differs with t in class
field only. Constructings(i) → wi is similar to that of the
second case since theclassIDof nodess(i) andwi are the
same. The pathwi → t contains cross-edges only. Since
no any signature can apply beyondwi , we need to findk
disjoint paths fromwi to t. This can be done by algorithm

3 with n = k. Notice that ifc(i)
s = ct then the paths(i)→ t

requires special handling as shown in the algorithm. Con-
structingm disjoint paths follows the similar strategy as in
the previous case. However, as shown in the algorithm, if
s(i) = w j , i 6= j, we should construct pathss(i) → t(j) and
s(j)→ t(i) instead ofs(i)→ t(i) ands(j)→ t(j).

Let x andy be two nodes in ann-cube andd = |x⊕y|
be the Hamming distance betweenx andy. LetZi = (x(i)→
y), 0≤ i ≤ n− 1, aren disjoint paths in ann-cube, then
there ared paths of length(d− 1) and (n− d) paths of
length(d+1). Then disjoint pathsZi = (x(i)→ y), 0≤ i ≤
n−1, can be constructed by Algorithm 2.

Algorithm 2 (CubeDisjointPaths(n,x,y))
begin

for i = 0 ton−1 do /* for each path */
v = x(i); Pi = v; u = v⊕y;
p3(n, i,v,y);

endfor
end

Algorithm 3 (p3(n, i,x,y))
begin

v = x;
for j = 1 ton do /* for each dimension */

b = (i + j) % n;
if (u & 2b) 6= 0, then v = v(b); p3 = (p3 : v);

endfor
end

In a 3-cube, letx = 000, 3 disjoint paths for everyy
are shown in Table 1. Notice that we also listed the case of
y = x = 000, it may appear in the case ofcs = ct when we
build k+mdisjoint paths in an MC(k,m).

Table 1. Hypercube disjoint path examples

(000, 000) (000, 001) (000, 010) (100, 000)
P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2

000 000 000 000 000 000 000 000 000 000 000 000
001 010 100 001 010 100 001 010 100 001 010 100
000 000 000 011 101 011 110 101 101

001 001 010 010 100 100

(000, 011) (000, 101) (000, 110) (000, 111)
P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2

000 000 000 000 000 000 000 000 000 000 000 000
001 010 100 001 010 100 001 010 100 001 010 100
011 011 101 101 110 101 011 110 110 011 110 101

111 111 111 111 111 111
011 101 110

The algorithm 2 can be used for constructingk or
m disjoint paths(u→ v) in MC(k,m) as follows. When
u and v differ only in classID we can call algorithm 3,
p3(k, i,cu,cv) to find a class-path in the class-cube. In our
algorithm for disjoint paths in MC(k,m), we make no dis-
tinction between the pathu→ v in MC(k,m) and the the
class-pathcu→ cv while there is no confusion arises. Sim-
ilarly, when u and v differ only in nodeID (in the same
cluster) we can call algorithm 3, p3(m, i,Mu[cu],Mv[cv]) to
generate a shortest path in ak-cube, and we identify this
path as the path(u→ v) in the clusterCs (= Ct).

Example 2: Assumem= k = 2, s= 0000000000, andt =
0000000001. SinceCs =Ct , we construct the paths bycase
0. The four paths are shown in Table 2. The longest path is
P0 or P1. |P0|= |P1|= H(u,v)+6 = 7.

Let the two clusters be Cs = (cs,Ms[h −
1], . . . ,Ms[cs + 1],∗,Ms[cs − 1], . . . ,Ms[0]) and
Ct = (ct ,Mt [h− 1], . . . ,Mt [ct + 1],∗,Mt [ct − 1], . . . ,Mt [0]).
Let HCi be a Hamiltonian cycle inHk containing the
directed edge(s : s(i)). In what follows, we give an
algorithm (Algorithm 4) for constructingk + m disjoint
paths froms to t in an MC(k,m). In the algorithm, we
first find pathPi for 0≤ i ≤ k−1 and then find pathPi for
k ≤ i ≤ k+ m− 1. A key-bit positiony is determines by

the following rule. Try to find a 0 inMs[c
(i)
s]⊕Mt [c

(i)
t],

0≤ i ≤ k− 1, from rightmost bit. If success, letx = the
bit position; otherwise,x = 0. Theny = k+x. We usel to
denote the bit position so that(u : u(l)) is an one-step path

Algorithm 4 (MetacubeDisjointPaths(k,m,s, t))
begin /* find k+mdisjoint pathsPi , 0≤ i ≤ k+m−1, from nodes to nodet in an MC(k,m). */

case 0(Cs = Ct):
0≤ i < k:

Pi = (s : s(i) : s(i,k) : (s(i,k,i)→ t(i,k,i)) : t(i,k) : t(i) : t),
where(s(i,k,i)→ t(i,k,i))← p3(k, i,s(i,k,i), t(i,k,i));

k≤ i < k+m:
Pi = p3(m, i−k,s(i), t);

case 1(Cs 6= Ct andcs = ct):
0≤ i < k:

Pi = (s : s(i) : s(i,y) : (s(i,y,l)→ t(i)) : t), /* y is a key-bit. */
where(s(i,y,l)→ t(i)) = p1(k,m,s(i,y,l), t(i));

k≤ i < k+m:
wi = (ct ,Mt [h−1], . . . ,Mt [ct +1],M(i)

s [ct],Mt [ct −1], . . . ,Mt [0]);
Pi = (s : s(i) : (s(i,l)→ wi → t)),
where(s(i,l)→ wi) = p1(k,m,s(i,l),wi) and(wi → t) = p3(m, i−k,wi , t));
if (M(j)

s [cs] = Mt [ct])
Pj = (s : s(j) : s(j, j ′) : (s(j, j ′,l)→ t(j ′)) : t),
where(s(j, j ′,l)→ t(j ′)) = p1(k,m,s(j, j ′,l), t(j ′));
Pj ′ = (s : s(j ′) : (s(j ′,l)→ t(j)) : t),
where(s(j ′,l)→ t(j)) = p1(k,m,s(j ′,l), t(j));

endif
case 2(cs 6= ct):

0≤ i < k:
wi = (c(i)

s ,Mt [h−1], . . . ,Mt [0]).
if (Ms[j] = Mt [j] for all j 6= c(i)

s)
(s(i)→ wi) = p1(k,m,s(i),wi)

else(s(i)→ wi) = (s(i) : s(i,y) : p1(k,m,s(i,y,l),wi));
endif
(wi → t) = p3(m, i,wi , t);
Pi = (s : (s(i)→ wi → t));
if (c(j)

s = ct)
(s(j)→ t(j)) = p1(k,m,s(j), t(j));
Pj = (s : (s(j)→ t(j)) : t);

endif
k≤ i < k+m:

wi = (cs,Mt [h−1], . . . ,Mt [ct +1],M(i)
t [ct],Mt [ct −1], . . . ,Mt [0]);

if (M(i)
s [cs] = Mt [cs])

(s(i)→ wi) = (s(i) : s(i,i′) : p1(k,m,s(i,i′,l),wi))
else(s(i)→ wi) = (s(i) : p1(k,m,s(i,l),wi));
endif
(wi → t(i)) = p3(k,0,wi , t(i));
Pi = (s : (s(i)→ wi → t(i)) : t)
if (wi = s(j))

if (M(i)
s [cs] = Mt [cs])

(s(i)→ w j) = (s(i) : s(i,i′) : p1(k,m,s(i,i′,l),w j))
else(s(i)→ w j) = (s(i) : p1(k,m,s(i,l),w j));
endif
(w j → t(j)) = p3(k,0,w j , t(j));
Pi = (s : (s(i)→ w j → t(j)) : t);
Pj = (s : (s(j)→ t(i)) : t);

endif
end

in HCi . p1(k,m,u,v) gets a path from nodeu to nodev in
an MC(k,m) by calling Algorithm 1 andp3(n, i,u,v) gets
a path containing cross-edges only, from nodeu to nodev
in an MC(k,m) by calling Algorithm 3.

Table 2. Example 2 (0000000000, 0000000001)

P0 (i = 0) P1 (i = 1) P2 (i = 2) P3 (i = 3)
0000000000 0000000000 0000000000 0000000000
0100000000 1000000000 0000000001 0000000010
0100000100 1000100000 0000000011
0000000100 0000100000 0000000001
0000000101 0000100001
0100000101 1000100001
0100000001 1000000001
0000000001 0000000001

Table 3. Example 3 (0000000000, 0001011101)

P0 (i = 0) P1 (i = 1) P2 (i = 2) P3 (i = 3)
0000000000 0000000000 0000000000 0000000000
0100000000 1000000000 0000000001 0000000010
0100000100 1000100000 0000000011 0100000010
1100000100 1100100000 0100000011 0100000110
1101000100 1101100000 0100000111 0100001110
1001000100 0101100000 0100001111 1100001110
1001010100 0101100100 1100001111 1101001110
0001010100 0101101100 1101001111 1001001110
0001010101 0001101100 1001001111 1001011110
0101010101 0001101101 1001011111 0001011110
0101011101 1001101101 0001011111 0001011100
0001011101 1001111101 0001011101 0001011101

1001011101
0001011101

Example 3: Assumem= k = 2, s= 0000000000, andt =
0001011101. Sincecs = ct andCs 6= Ct , we construct the
paths bycase 1. First, consider the construction ofP0 and
P1. SinceMs[1] = 00 andMt [1] = 11, we choosey = 2 for
i = 0 as a key-bit of type 2. SinceMs[2] = 00 andMt [2] =
01, we choosey = 3 for i = 1 as a key-bit of type 1. Next,
consider pathsP2 andP3. SinceH(Ms[cs],Mt [ct]) = 1, from
the algorithm we havej = 2 andj ′= 3. The four paths from
nodes to nodet are shown in Table 3. The longest path is
P1. |P1|= H(0,93)+22 +4 = 13.
Example 4: Assumem= k = 2, s= 0000000000, andt =
0100001111. Sincecs 6= ct we construct pathP0 andP1 by
case 2. SinceH(cs,ct) = 1, no signature is assigned for
P0. ForP1, sinceMs[2] = Mt [2] = 00 we assigny = 2. The
four paths from nodes to nodet are shown in Table 4. The
longest path isP1. |P1|= H(0,15)+22 +4+ |Z1|= 13.
Example 5: Assumem= k = 2, s= 0000000001, andt =
1101000000. We construct the pathsP0 andP1 by case 2
and choosey= 2 for bothi = 0 and 1. Sincec(0)

s = c(1)
t and

c(1)
s = c(0)

t , we have|Z0| = |Z1| = 1. The four paths from
nodes to nodet are shown in Table 5. The longest path is
P3. |P3| = H(1,64)+22 +4+2 = 12, whered(s(i), t(i)) =

Table 4. Example 4 (0000000000, 0100001111)

P0 (i = 0) P1 (i = 1) P2 (i = 2) P3 (i = 3)
0000000000 0000000000 0000000000 0000000000
0100000000 1000000000 0000000001 0000000010
0100000100 1000010000 0100000001 0100000010
0100001100 1100010000 0100001001 0100000110
1100001100 0100010000 1100001001 1100000110
1000001100 0100010100 1000001001 1000000110
0000001100 0100011100 0000001001 0000000110
0000001101 0000011100 0000001011 0000000111
0000001111 0000011101 0100001011 0100000111
0100001111 0000011111 0100001111 0100001111

1000011111
1000001111
1100001111
0100001111

Table 5. Example 5 (0000000001, 1101000000)

P0 (i = 0) P1 (i = 1) P2 (i = 2) P3 (i = 3)
0000000001 0000000001 0000000001 0000000001
0100000001 1000000001 0000000000 0000000011
0100000101 1000010001 0100000000 0100000011
1100000101 1100010001 1100000000 1100000011
1101000101 1101010001 1101000000 1101000011
1001000101 0101010001 1111000011
0001000101 0001010001 1011000011
0001000100 0001010000 0011000011
0101000100 1001010000 0011000010
0101000000 1001000000 0011000000
1101000000 1101000000 0111000000

1111000000
1101000000

d(s, t)+ 4, and the value 2 is from the length of the class-
path (00:01:11).

Now we are ready to give the main result of this paper
in the following theorem.

Theorem 2. Given any two distinct nodes s and t in
MC(k,m), we can find k+ m disjoint paths from s to t in
O(log2 p) time such that the length of the paths is at most
H(s, t) + 2k + m+ 5, where p is the number of nodes in
MC(k,m), and H(s, t) is the Hamming distance between s
and t.

Proof: Following the algorithm, the proof is divided into
three cases. In the first case, since thek paths constructed
outside the clusterCs go through distinct clusters and there-
fore, cannot intersect each other or them paths inside the
cluster constructed by the hypercube algorithm. Them
paths in the cluster are disjoint since the cluster is anm-
cube.

In the second case, ifPi has a key-bit of type 1 then
it is clear that they cannot intersect with any other paths
since no other path will change the value of that key-bit
following the shortest path principle. If the key-bits of the

two pathsPi andPj are of type 2, from the definition of type
2 key-bit, we know that the two paths cannot intersect each
other when passing the nodes in the hamiltonian cycle that

are neitherc(i)
s nor c(j)

s . At nodec(i)
s ∈ Hk, pathPj updates

the values in fieldM[c(i)] and the values in the fieldM[c j)]
was partially updated only (the key-bit changed and other
bits unchanged). However, the values in the fieldM[c(j)]
for Pi is either unchanged or fully updated. Therefore, two
paths cannot meet at the nodes of classc(i). Similarly, they

cannot meet at the nodes of classc(j)
s . Similar argument can

be applied to the casesk≤ i, j ≤ k+ m−1, or Pi (Pj) has
key-bit of type 2 andk≤ j ≤ k+m−1 (k≤ i1≤ k+m−1,

assumingH(s, t) > 1. If H(s, t) = 1 andM(j)
s [cs] = Mt [ct]

then the algorithm usesj 6= j as a key-bit. The two paths
s (j, j ′)→ t(j ′) ands(j ′)→ t(j) constructed in the algorithm
are disjoint though both usej ′ as a key-bit. We conclude
that them+k paths are disjoint in this case.

In the third case, consider firstPi , 0≤ i ≤ k−1. We
divide Pi into to parts,(s(i) → wi) and (wi → t). Since
the first part of the path includes a signature (exceptPq in
case 2.1), they should be disjoint following the same ar-
gument as in the second case (the argument is true even
one of the paths does not carry signature). Moreover, it is
also disjoint with the second part of other paths because
of its unique signature. The second parts of the paths
Pi , 0≤ i ≤ k−1, contain only the cross-edges that are iden-
tical to the disjoint class pathsZi , they are also disjoint.
Therefore, thek paths constructed by the algorithm are dis-
joint. Next, considerPi , k ≤ i ≤ m+ k− 1. Since both
(s(i)→ wi) and(wi → t(i)) contain the naturally embedded
signature on dimensioni−k at fieldM[cs] or M[ct] assum-

ing M(i)
s [cs] 6= Mt [ct] andwi 6= s(j), by applying the similar

argument as in the second case,Pi cannot intersect with any
otherPi′ with 0≤ i′ ≤m+k−1, i′ 6= i. If wi = s(j) then we
havePi = s(i)→ t(j) andPj = s(j)→ t(i). If M(i)

s [cs] = Mt [ct]
then we usei′ 6= i as a key-bit. It is easy to see that the above
arrangement does not affect the correctness of the previ-
ous argument forPi andPj to be disjoint with other paths.
Therefore, we conclude that allk+m paths constructed in
this case are disjoint.

The length of the longest path(s→ t) in the first case
is H(s, t)+6, whereH(s, t) is Hamming distance between
s andt. The length of the longest path(s→ t) in the sec-
ond case isH(s, t) + 2k + 4. Similarly, the longest length
of the paths(s→ t) in the third case isH(s, t)+ 2k + 4+
max0≤i≤k−1{|Zi |} ≤ H(s, t)+2k +m+5.

4 Concluding Remarks

In this paper, we gave an algorithm for finding thek+ m
disjoint paths in the metacube. The metacube can be used
as an interconnection network for very large scale paral-
lel computers connecting hundreds of millions nodes with
up to 6 links per node. For this reason, the issues of dis-
joint paths and fault-tolerance in metacube is very impor-
tant. From the disjoint paths algorithm, any two nonfaulty

nodes in a metacube with up tok+m−1 faulty nodes can
be connected by a faulty-free path in the metacube.

Recently, much of the community has moved on
to lower-dimensional topologies such as meshes and tori.
However, the SGI Origin 2000, a fairly recent multiproces-
sor, does use a hypercube topology so a metacube could
be of use to industry. In order to connect 128 processors
with 6-link routers, an Origin2000 uses Cray Router. Fur-
thermore, multiple Origin2000 systems are connected into
an array to connect more than 128 processors. By using
the metacube architecture, the current 6-link routers can
connect much more processors directly without using Cray
Router. Generally, the metacube system can be built with
the same technology adopted in the Origin2000 system: the
key point is to design a 6-link router and connect router
board ports with link cables. Any application runnable on
Origin2000 is possibly runnable on metacube.

References

[1] K. Ghose and K. R. Desai. Hierarchical cubic networks.
IEEE Transactions on Parallel and Distributed Systems,
6(4):427–435, April 1995.

[2] Q.-P. Gu and S. Peng. Optimal algorithms for node-to-node
fault tolerant routing in hypercubes.The Computer Journal,
39(7):626–629, 1996.

[3] J. P. Hayes and T. N. Mudge. Hypercube supercomputers.
Proc. IEEE, 17(12):1829–1841, Dec. 1989.

[4] J. Laudon and D. Lenoski, The SGI Origin 2000: A cc-
NUMA Highly Scalable Server. InProceedings of the 24th
Annual International Symposium on Computer Architec-
ture, pages 241–251, June 1997.

[5] Y. Li and S. Peng. Dual-cubes: a new interconnection net-
work for high-performance computer clusters. InProceed-
ings of the 2000 International Computer Symposium, Work-
shop on Computer Architecture, pages 51–57, December
2000.

[6] Y. Li and S. Peng. Fault-tolerant routing and disjoint paths
in dual-cube: a new interconnection network. InProceed-
ings of the 2001 International Conference on Parallel and
Distributed Systems, pages 315–322. IEEE Computer Soci-
ety Press, June 2001.

[7] Y. Li, S. Peng, and W. Chu. Metacube – a new inter-
connection network for large scale parallel systems.Aus-
tralian Computer Science Communications, 24(3):29–36,
Jan. 2002.

[8] F. P. Preparata and J. Vuillemin. The cube-connected cy-
cles: a versatile network for parallel computation.Commun.
ACM, 24:300–309, May 1981.

[9] SGI, Origin2000 Rackmount Owner’s Guide, 007-3456-
003, http://techpubs.sgi.com/, 1997.

[10] L. W. Tucker and G. G. Robertson. Architecture and appli-
cations of the connection machine.IEEE Computer, 21:26–
38, August 1988.

[11] B. Vanvoorst, S. Seidel, and E. Barscz. Workload of an
ipsc/860. InProceedings of the Scalable High-Performance
Computing Conference, pages 221–228, 1994.

[12] S. G. Ziavras. RH: a versatile family of reduced hyper-
cube interconnection networks.IEEE Transactions on Par-
allel and Distributed Systems, 5(11):1210–1220, November
1994.

