The IASTED International Conference on Parallel and Distributed Computing and Systems, Marina del Rey, CA, USA, November 3-5, 2003, pp.43-50

Disjoint Paths in Metacube

Yamin Li, Shietung Peng
Department of Computer Science
Hosei University
Tokyo 184-8584 Japan

ABSTRACT

A new interconnection network with low-degree for very
large parallel computers called metacube (MC) has been
introduced recently. The MC network has short diameter
similar to that of the hypercube. However, the degree of
an MC network is much lower than that of a hypercube
of the same size. More than one hundred of millions of
nodes can be connected by an MC network with up to 6
links per node. The MC network has 2-level cube structure.
An MC(k, m) network that connectg = 2m*+k nodes with
m+ k links per node has two parameteksgndm, wherek

is the dimension of the high-level cubes (class-cubes) and
m is the dimension of the low-level cubes (clusters). In
this paper, we describe an efficient algorithm for finding
disjoint paths in MC networks. We show that, for any two
distinct nodesi andv in an MC(k, m), k+ m disjoint paths
from u to v can be found irO(log? p) time. The length of
the paths is at modtl (s,t) + 2+ m+ 5, whereH(st) is

the Hamming distance betwesmndt. The result implies
that a fault-free path between any two nonfaulty nodes can
be found in an MCK, m) with up tom+ k — 1 faulty nodes.

KEY WORDS
Interconnection networks, hypercube, disjoint paths, fault-
tolerance

1 Introduction

The hypercube has been widely used as the interconnec-
tion network in a wide variety of parallel systems such as
Intel iPSC [11], the nCUBE [3], the Connection Machine
CM-2110], and SGI Origin 2000 [4] [9]. Am-dimensional
hypercube if-cube) contains 2nodes and has edges per
node. If uniquen-bit binary addresses are assigned to the
nodes of am-cube, then an edge connects two nodes if and
only if their binary addresses differ in a single bit. Because
of its elegant topological properties and the ability to em-
ulate a wide variety of other frequently used networks, the
hypercube has been one of the most popular interconnec-
tion networks for parallel computer systems.

However, the number of edges per node increases log-
arithmically as the total number of nodes in the hypercube
increases. Currently, the practical number of links is lim-
ited to about eight per node [9]. If one node has one pro-
cessor, the total number of processors in a parallel system

43

Wanming Chu
Department of Computer Hardware
University of Aizu
Aizu-Wakamatsu 965-8580 Japan

with ann-cube connection is restricted to several hundreds.
Therefore, it is interesting to develop an interconnection
network which will link a large number of nodes with a
small number of links per node while retaining most of the
hypercube’s topological properties.

Several variations of the hypercube have been pro-
posed in the literature. Those focused on reduction of the
number of edges of the hypercube include cube-connected
cycles [8], reduced hypercube [12] and the hierarchical cu-
bic network [1]. However, none of them can provide the
flexibility that the metacube supports. On practical side,
a parallel computer Origin2000 [4] [9] is constructed with
the hypercube-like structure. Origin2000 reduces the num-
ber of links required by introducin@ray Routerto con-
nect hypercubes (clusters). A Cray Router is the high level
router that does not connect processors directly. The pro-
cessors are attached to regular routers within the clusters.
Each regular router has six links. Two links connect two
nodes; each node contains two processors. Three links are
3-cube edges and a CrayLink connects to a Cray Router.

Recently, Y. Li et al. introduced a new interconnec-
tion network, calledmetacubgor MC network [7]. The
MC network shares many desirable properties of the hy-
percube (e.g., the key property of the hypercube, low di-
ameter etc.) and can be used as an interconnection net-
work for a parallel computer system of almost unlimited
size with just a small number of links per node. For exam-
ple, an MC(23) with 5 links per node has 16384 nodes and
an MC(3 3) with 6 links per node has’2= 134,217,728
nodes. The number of nodes connected by the MC is much
larger than that of the HCN or the RH with the same amount
of links per node. The CCC uses only 3 links per node.
However, because of its ring structure, the diameter or the
length of the routing path in CCC is about twice of that
of the hypercube. Compared with the CCC, the MC has
shorter diameter, length of the routing path, and the broad-
casting time. With metacube architecture, the Origin2000
can connect much more processors directly without using
any Cray Router. Note that there is no need to modify any
hardware circuit of the Origin2000; what we need to do is
to connect router board ports with link cables in metacube
topology.

In this paper, we give efficient algorithms for finding
disjoint paths in metacube. The remainder of this paper
is organized as follows. Section 2 introduces the MC net-
work, its topological properties, and a point-to-point rout-

ing algorithm in the MC network. Section 3 gives the algo-
rithm for findingm+ k disjoint paths between two distinct
nodes in an MQ{, m). Section 4 concludes the paper and
presents some future research directions.

2 Preliminaries

The MC network is motivated by the dual-cube network
proposed by Li and Peng [5] [6] that mitigates the port lim-
itation problem in the hypercube network so that the num-
ber of nodes in the network is much larger than that of the
hypercube with a fixed amount of link per node. The MC
network includes the dual-cube as a special case. An MC
network has a 2-level cube structure: high-level cubes rep-
resented by the leftmogtbits of the binary address of the
node which containsn2k + k bits (thesek bits serve as a
class indicator), and low-level cubes, called clusters that
form the basic components in the network, represented by
them bits of the remairmm2X bits, which occupy the differ-
ent portions in then2X bits for different classes.

More specifically, there are two parameters in an MC
network,k andm. An MC(k,m) containsh = 2 classes
Each class containg®%) clusters and each cluster con-
tains 2" nodes Therefore, an MQ(m) usesmh-+k bi-
nary bits to identify a node and the total number of nodes
is 2" wheren = mh+ k. The value ofk affects strongly
the growth rate of the size of the network. An MQfJ)
containing 2™ nodes is called dual-cube Similarly, an
MC(2,m), an MC(3m) and an MC(4m) containing 2™?
nodes, ™2 nodes and ™ nodes are calleguad-cube
oct-cubeand hex-cube respectively. Since an MC(3)
contains 27 nodes, the oct-cube is sufficient to construct
practically parallel computers of very large size. The hex-
cube is of theoretical interest only. Note that an M@(p
is a hypercube.

A node in an MCk,m) can be uniquely identified by
a (mh+K)-bit binary number. The leftmodt-bit binary
number defines a class of the nodaéslD. There aren
classes. In each class, there af® Bodes and each node
is represented by mh-bit binary number. 2 nodes of the
same class form a cluster. Therefore, there &f&2) clus-
ters in each class. Am-bit binary number, located in a
special portion of thenh-bit (will be explained in the next
paragraph) identifies a node within the clusteodelD.
Therefore, therfih+ k)-bit node address in an M&(m) is
divided into three parts: B-bit classID anm(h — 1)-bit
clusterIDand anm-bit nodelD

In the following discussion, we use= (cy, My[h—
1],...,My[1],My[0]) to denote théD of nodeu, wheregy is
ak-bit binary number ani[i], 0 <i < h—1 arem-bit bi-
nary numbers. LetlassID(u) = ¢y, nodelD(u) = My[cy] x
2% andclusterlD(U) = o<i<h_1.ixc, Muli] X 2". Themh
bit numbemodelD(u) +clusterID(u) is a unique identifier
of nodeu in classcy. For exampleu = 0100111000 in
an MC(22) is denoted as node 56 of class 1 and node set
(48,52,56,60) in class 1 forms a cluster wittlusterID=
48. Fig. 1 shows the format of a node address for an

MC(k, m).
mhbits (h = 2¥)

k bits m bits m bits m bits
/_/H/_/H /_/H/_/H
| ¢ [mh-1] | My | MO |

Field: h h—1 1 0

Figure 1. Format of a node address for an M@

The links of an MCK, m) is constructed in the follow-
ing manner. Then-bit field M[c] in the address of a node
of classc forms a low-levelm-cube withm links, namely
cube-edgeThesdow-level mcubes are calledlusters A
cluster containing node is denoted a€,. The links that
connect nodes among clusters are caltemss-edgesind
are defined as following. For any two nodes whose ad-
dresses differ only in a bit position in the class field, there
is a cross-edge connecting these two nodes. That i%-the
bit field c forms ahigh-level kcube which connects those
nodes whose addresses except class field are the same. The
high-levelk-cube is callectlass-cube

The addresses of two nodes connected by a cross-
edge differ only on one bit position within thk-bit
class field and there is no direct connection among the
clusters of the same class. Therefore, a node in an
MC(k,m) has m+ k links: m links construct anm-
cube cluster and links construct ak-cube. For ex-
ample, the neighbors in the cluster of the node with
address (01,111,101,110,000) in an MQR have ad-
dresses (01,111,101,1000), (01,111,101,1M000) and
(01,111,101010,000). The underlined bits are those that
differ from the corresponding bits in the address of the ref-
erenced node. The two neighbors in the high-level cube are
(00,111,101,110,000) and11111,101,110,000).

Fig. 2 shows the structure of an MC@), where the
clusters in the same square are of the same class. The dec-
imal numbers ar@odel D+ clusterID. In Fig. 2, there are
22(*-1) = B4 clusters in each square and each cluster is a
2-cube. The figure shows only 4 high-level cubes, each of
which contains a distinct node in the cluster O of the class
0.

The problem of finding a path from a source nade
to a destination node and forwarding messages along the
path is known as the point-to-point routing problem. It is
the basic problem for any interconnection network. We de-
scribe briefly below the point-to-point routing algorithm in
metacube [7]. This algorithm is the building block for find
disjoint paths in metacube.

We adopt the following notation. In the metacube
MC(k,m), each node ham+ k neighbors. Les, 0 <
i < k-1, be theith dimensional neighbor of nodawithin
the k-cube, that is, the addressessainds') differ in the
ith bit position (the rightmost bit is the Oth bit) in the class
field c. Letsi™® 0<i<m-—1, be theith dimensional

Figure 2. A metacube MC(2,2)

neighbor of nodein them-cube, that is, the addressessof
ands(+K differ in theith bit position in the fieldVi[c]. Let

shi) = (80 for 0 <i, j <m+k—1. We usgu — v) to
denote a path from nodeto nodev. If the length of a path
(u—v) is 1 (through a single edge), the path is denoted as
(u:v), and the edge is denoted @sv).

In a graphG = (V,E) whereV is the set of all vertices
(nodes) ancE is the set of all edges i, let P’ = (vo —
Vho1) = (Vo:V1:...:Vh_1) be a path from node, to node
Vh-1, Wherev; €V for0<i <h—1and edggvj_1,vj) €E
for 1< j <h-1. We sayP is aHamiltonian pathif (1) P/
contains every node M and (2) nodes; (0<i<h-—1)are
all distinct. LetP = (vo — vi) = (P : w), wherev,, = v;, for
i=0,1,...,orh—2. If v, = vp, thenP becomes &lamilto-
nian cyclé; otherwise, we calP a extended-Hamiltonian
path The length of a Hamiltonian path in lecube is
2¢— 1; the length of a Hamiltonian cycle or an extended
Hamiltonian path is'2 Let aweak-Hamiltonian pattbe

1A Hamiltonian cycle is defined as a path through a graph which starts

and ends at the same vertex and includes every other vertex exactly once.

a Hamiltonian path, a Hamiltonian cycle, or an extended-
Hamiltonian path. The following lemma [7] is needed for
the routing algorithm.

Lemma 1. Given any two nodes s and t in an n-cube, there
exists a weak-Hamiltonian path from s tot.

Since we can modify only a small portiompits) by
cube-edges, we need to move to clusters of distinct classes
(along cross-edges) to modify the other portions oflihe
We also need to arrange the order of nodes on the path so
that the last portion modified is thdelDof t or its neigh-
bor. Since there arfeclasses, the efficient way to do this is
by following a weak Hamiltonian path fromy (class num-
ber of nodes) to ¢; (class number of nodg in thek-cube.

For each nodeu in the k-cube, letnextu) be the
node next tou in the weak-Hamiltonian path froros to
¢.. Let the node addresses efandt be (cs,Ms[h —
1],...,Mg[1],Mg[0]) and(c, Mt [h—1], ..., M [1],M;[0]), re-
spectively. For the routing within am-cube of class,
we can follow theascending routingtrategy, by which the

least significant non-zero bit ¢Ms[c] & M¢[c]) is chosen
as the first dimension for routing, and so on. The routing
algorithm in an MCk, m) is given below. Théoop will ter-
minate when théreak is executed. Notice that the details
of routing in them-cube is omitted in the algorithm.

Algorithm 1 (p1fn,k,s,t))
begin /* build a pathpl fromstot in MC(k,m) */
U=cCg V=s pl=v,
loop always
W= (uaMV[h_l]v“'aMV[u+1]7Mt[u]a
Myu—1],...,M/[0]); /* Ms[u] — M;[u] */
if w£ v, then pl= (pl— w);
if w=t, then break;
v=w,
w = (next(u),My[h—1],...,My[u+ 1], My[u],
Myu—1],...,My[Q]); /* u— next(u)*/
pl=(pl:w);
u = nextu);
endloop
end

Example 1. In an MC(23), let s = 00000000000000
andt = 00001110101011. The weak-Hamiltonian path for
(cs — &) in the high-level 2-cube is a Hamiltonian cycle,
(00:01:11:10:0Dfor instance. The routing inside clus-
ters may start from any dimension. The path can be
00000000000000 : 00000000000001 : 00000000000011 :
01000000000011 : 01000000001011 : 01000000101011 :
11000000101011 : 11001000101011 : 10001000101011 :
10001010101011: 10001110101011 : 00001110101011.

In the case of a Hamiltonian cycle, the parameter
nexts) give the direction of the Hamiltonian cycle. For
example, in Example 1, if we latexts) = 10, then the
Hamiltonian cycle for(cs — ¢;) in the high-level 2-cube
will be (00:10:11:01:00Q

Let Hi(s,;t), 0 <i <h-1, be the Hamming dis-
tance betweers andt in MJi], i.e. the number of bits
with distinct values inMs[i] and Mi[i]. From the algo-
rithm, the longest length of the routing path Isi2Hy(s,t),
whereHp(s,t) = zihgol Hi(s,t). This formula gives an up-
per bound tod(s,t), the distance betweesmiandt in an
MC(k,m). Let H(s,t) be the Hamming distance between
sandt. Clearly, we haveH (s,t) < d(s,t) < Hn(s,t) + 2.
BecauseH (s,t) = Hn(s,t) + Hk(s,t), whereHi(s,t) is the
Hamming distance betweemandt in c field, we have
H(st) < d(st) < H(st) — Hg(st) + 2X. The longest path
in an MCK,m) is froms=0---0 tot, wherec, =0---0
andM[i] =1---1for alli, 0<i <h-1. The length of
this path is #(m+1). Itis easy to see that this path is the
shortest path for connectirgpndt. Therefore, it is the di-
ameter of an MQ(, m). Since the average distance in each
cluster ism/2, the average distance between any two nodes
in an MCk, m) is at most(m/2)2¢ + 2K = (n — k) /24 2,
wheren = m2X 4k (in the case of Hamiltonian path, it is
(n—k)/242K—1). Notice that it is possible to have a rout-
ing algorithm in an MCK, m) which bypasses the classf

Ms[c] = M[c]. In such a case, the length of the routing path
for somes andt might be shorter than that produced by the
algorithm above. We put these results into the following
theorem.

Theorem 1. Inan MC(km), let d's,t) and dyg(S,t) be the
distance and the average distance between any two nodes
s and t, respectively. Let(dt) be the Hamming distance
between s and t. Ther(slt) < H(st) — Hg(s,t) + 2 and

davg < (N—K)/2+ 2%, where H(st) is the Hamming dis-
tance between s and t in the class field. The diameter of an
MC(k,m) is2¢(m+1).

3 Disjoint Paths in Metacube

In this section, we will describe an algorithm for finding
k4 m disjoint paths from a source noddo a destination
nodet in MC(k, m). For a nodaiin an MC(, m), we denote
u®, 0<i<k—1, as global neighbors; and“t1), 0< j <

m— 1, as local neighbors. The ideas for constructing the
disjoint paths fromstot are

1. The local neighbor of will be connected to the lo-
cal neighbor ot and the global neighbor &fto the
global neighbor of.

2. The locality betweersandt is to be considered while
constructing the disjoint paths. First, consider the
case thas andt are in the same cluster. Secorsd,
andt are in the clusters of the same class. Thad,
andt are in the clusters of different classes.

The first case is the simplest one. Tkeaths are
constructed such that) is connected to), 0<i <k—1,
through distinct clusters of the same class. Th@aths
are constructed inside the cluster using the hypercube algo-
rithm.

In the second case thaandt are in the distinct clus-
ters of the same class, a problem for constructing the dis-
joint path is as follows. WhemMs[u] = M¢[u] for some
u, 0 <u<2K—1, the path(s — t) will just advance
through the cross-edges of a hamiltonian path and do noth-
ing. This will cause two paths along the distinct dimen-
sions in thek-cube to intersect at some vertex. For exam-
ple, in an MG2,2), two paths frons = 0000000000 td =
1111000000 along different class-pati@® : 01 : 13 and
(00 : 10 : 13 will meet at a common vertex 1100000000
before reach. To guarantee thk paths are disjoint while
using hamiltonian cycles to modify thil[x] fields, we
adopt the idea a$ignature We assign each path a unique
signature defined through key-bit A key-bit is a bit
in a node address. It will be assigned to each ofkhe
neighbors of node, s, 0 <i < k—1, a signature that
is unique to the path through that neighbor before apply-
ing the point-to-point routing algorithm using a Hamilto-
nian cycle. If we say “the key-bit is at the dimension
X', it means that we will negate the value of the key-bit
of a node to get the address of that nodetsi dimen-
sional neighbor. Thé&+ m dimensions of an Md{m)

are Q1,...,k—1kk+1,....k+m—1, where the firsk
dimensions are in the class fiatg and the nextn dimen-
sions are in the fiel[c,], counted from right to left. The
key-bit is a bit inM|[c,] defined in a way that the path holds
a unique bit-pattern d¥i[c,] after negating that bit.

We usect’ andc” to denotec, andc,, respec-
tively. The key-bit can be determined as below. For the
ith disjoint path (0<i < k—1), if we can find a bit so
that Ms[cé')] and M [c§'>] in that bit have the same value,
then let that bit be the key-bitypel); otherwise, take any
bit as the key-bittype2). The idea behind this is to en-
force a signature (negating the key-bit value) before apply-
ing the point-to-point routing algorithm. For thté disjoint
path k <i < m+k—1), theith bit can serve as a key-bit
since it is unique to the paf® throughs') except the case
H(Mslcs), Mi[ar]) = L. 1f MU [eg] = My then the bit]
cannot be used as a key-bit sirfdgc] is no longer unique
to the path througk'l). Therefore, in our algorithm, we let
P, goes througls'/1") for somej’,k < j' <m+k— 1, and
then connected td1"). The PathP; will go throughs'i")
and then connected t&). After completing the hamilto-
nian cycle, them paths will be back to the clust€x. Let
the node forR after completing the hamiltonian cycle be
w; (w; differs witht in field M[c;] only). Then, the subpaths
w; — t should be disjoint paths iff;. This can be done
through algorithm 3 witlh=m.

In the last case thatandt are in the clusters of differ-
ent classes, for constructing thelisjoint path, we connect
st tot), 0<i < k—1. This is done through two two sub-
pathss®) — w; andw; — t, wherew; differs witht in class
field only. Constructing”) — w; is similar to that of the
second case since tiotassIDof nodess') andw; are the
same. The pathy, — t contains cross-edges only. Since
no any signature can apply beyong we need to findk
disjoint paths fromw; tot. This can be done by algorithm
3 with n = k. Notice that ifc!) = ¢ then the patfs) — t
requires special handling as shown in the algorithm. Con-
structingm disjoint paths follows the similar strategy as in
the previous case. However, as shown in the algorithm, if
s = w;, i # j, we should construct patrs) — t() and
st -t instead ok — t() ands() — t(),

Letx andy be two nodes in an-cube andd = [x®Y|
be the Hamming distance betweeandy. LetZ; = (x() —

y), 0<i <n-1, aren disjoint paths in am-cube, then
there ared paths of length(d — 1) and (n—d) paths of
length(d +1). Then disjoint pathsz; = (x) —y),0<i <
n—1, can be constructed by Algorithm 2.

Algorithm 2 (CubeDisjointPaths(x, y))
begin
fori=0ton—1do /*for each path*/
v=x;R=v;u=vay;
P3N, i,v,y);
endfor
end

Algorithm 3 (p36,i,x,Y))
begin
V=X;
for j=1tondo /*for each dimension */
b=(i+])%n;
if (u&2P)+#0,thenv=v"); p3=(p3:v);
endfor
end

In a 3-cube, lex = 000, 3 disjoint paths for every
are shown in Table 1. Notice that we also listed the case of
y =x= 000, it may appear in the case@f= ¢; when we
build k+ mdisjoint paths in an MG(m).

Table 1. Hypercube disjoint path examples

(000, 000) (000, 001) (000, 010) (100, 000)
R P RIRBR A B|RR P PR|RBR P B
000 000 000 000 000 000 000 000 000 000 000 000
001 010 100001 010 100 001 010 100 001 010 100
000 000 000 011 101|011 110[101 101

001 001010 010/ 100 100

(000, 011) (000, 101) (000, 110) (000, 111)

b PRI P BRI A BRIR R R
000 000 000 000 000 000 000 000 000 000 000 000
001 010 100 001 010 100 001 010 100 001 010 100
011 011 101101 110 104011 110 110 011 110 101
111 111 111 111 111 111
011 101 110

The algorithm 2 can be used for constructikgr
m disjoint paths(u — v) in MC(k,m) as follows. When
u andyv differ only in classID we can call algorithm 3,
p3(K,i,cy,cy) to find a class-path in the class-cube. In our
algorithm for disjoint paths in MG m), we make no dis-
tinction between the path — v in MC(k,m) and the the
class-pattt, — ¢, while there is no confusion arises. Sim-
ilarly, when u and v differ only in nodelD (in the same
cluster) we can call algorithm 3, p8(i, My[cy], My[cy]) to
generate a shortest path irkaube, and we identify this
path as the patfu — v) in the clustelCs (=).

Example 2 Assumem= k = 2, s= 0000000000, ant=
0000000001. Sincgs = C;, we construct the paths loase
0. The four paths are shown in Table 2. The longest path is
PorPr. [P =|P|=H(uv)+6=7.

Let the two clusters beCs = (cs,Msh —
1,...,Mg[cs + 1], %,Ms[Cs 1],...,Mg[0]) and
G = (Ct,Mt[h— 1],,Mt[Ct +1],*,Mt[Ct — 1],,Mt[0])
Let HC, be a Hamiltonian cycle irHx containing the
directed edge(s: s')). In what follows, we give an
algorithm (Algorithm 4) for constructing + m disjoint
paths fromstot in an MCK,m). In the algorithm, we
first find pathP, for 0 < i < k-1 and then find patR, for
k<i<k+m-—1. A key-bit positiony is determines by
the following rule. Try to find a 0 itMs[cY] & M[c"],
0<i < k-1, from rightmost bit. If success, let= the
bit position; otherwisex = 0. Theny = k+ x. We usd to
denote the bit position so that : u(')) is an one-step path

Algorithm 4 (MetacubeDisjointPathis(m, s,t))
begin /*find k4+ mdisjoint pathd?, 0 <i < k+m— 1, from nodesto nodet in an MCK, m). */

case 0Cs=C):
0<i<k
B = (s:sh sk (sliki) WUK@ﬂWQ
where(s(" k') —>t<' ki)Y — p3(k,|,s(' ki) (ki)
k<i<k+m:

R = p3(m,i —k, s t);
case 1(Cs # G andcs = ¢):
0<i<k
R =(s:sV:sly):(siyl) 10y 1), /*yis akey-bit. */
where(s(" v)) = p(k,m,s¥) ¢y

k<i<k+m: .
Wi = (e, Milh—1], ... My [e+ 1, Mg [e, Me[— 1., Mi[0);
R=(s:s": (W —w—1),
Where(s(' 1 —w) = pik,m, st wi) and(w; — t) = p3(m,i —k,wi,t));

)
if (Ms [cs] = M¢[c))
P =(s:s): s () 0D :t),
where(s U "D = t(9) = p1(k,m,s:1"D t():
Pj’ = (S S(J,) S(J/al) _>t()) :t),
where(si"D) — t()) = p1(k,m "D t(D);
endif
case 2Cs # G):
0<i<k _
wi = (ct),Mi[h—1],.. (0]
if (Ms[j] = M[j] forall j)
(s —w) = pl(k m s w)
else(s) — w;) = (s : 1Y) : p1(k,m,sT¥) wy));
endif
(W —t) = p3(m,i,wi,t);
B =(s:(sV—w—t));
if (¢ = a)
(s 1)) = pai,m, st 0));
P = (s: (s¥) —ty:t);
endif
k<i<k+m: _
W = (ca, My —1)... Mo+ 12, MU o], Mo — 10, M [0]);
it (ML [cd] = Mi[cd))
(8D —w) = (81 : s : p1(k,m, 0D wp))
else(s) — w;) = (s : pa(k,m st w));
endif
(w; — t0) = p3(k,0,w;,t0);
R=(s: (s —w—th):t)
if (wj =sW)
it (M cs] = Me[cd])
(s — wj) = (sV): s01) : p1(k,m, 1D w;))
else(s’) — wj) = (sV : p1(k,m s wj));
endif
(wj — t1)) = p3(k,0,w;,t0);
P =(s: (S(i) — W —>t(j)) t);
P = (s: (81 —tM):t);
endif
end

in HG;. pl(k,m,u,v) gets a path from nodeto nodev in
an MCk, m) by calling Algorithm 1 andp3(n,i,u,v) gets
a path containing cross-edges only, from nade nodev

Table 4. Example 4 (0000000000, 0100001111)

in an MC, m) by calling Algorithm 3.

Table 2. Example 2 (0000000000, 0000000001)

R(i=-0 [P(-1 [R(-2 [mi-9
000000@O0O | 0OOMMOO000 | OOOOOO00O00| 0000000000
010000@O0 | 10000000 | 0000000001| 0000000010
010000000 | 1000100000 0000000011
00000000 | 0000LO0000 0000000001
000000a01 | 0000100001
010000001 | 1000100001
010000@01 | 100000001
000000@O1 | 00000001

Table 3. Example 3 (0000000000, 0001011101)

R (i=0)

PL(i=1)

R (=2

P (i=3)

000000@00
010000@00
010000@00
110000a00
110100000
100100000
100101a00
000101a00
000101001
010101001
010101101
000101101

00000000
10000000
100a100000
1100100000
1101100000
0101100000
0101100100
0101101100
0001101100
000101101
1001101101
100111101
1001011101
0001011101

0000000000
0000000001
0000000011
0100000011
0100000111
0100001111
1100001111
1101001111
1001001111
1001011111
0001011111
0001011101

0000000000
0000000010
0100000010
0100000110
0100001110
1100001110
1101001110
1001001110
1001011110
0001011110
0001011100
0001011101

R (=0)

PLi=1)

R (=2

7 (=3

0000000000
0100000000
0100000100
0100001100
1100001100
1000001100
0000001100
0000001101
0000001111
0100001111

0000@O000
1000@m0000
1000a.0000
11000a.0000
0100a.0000
010000100
01001100
000001100
00001101
00ooa1111
10001111
10001111
11001111
01001111

0000000000
0000000001
0100000001
0100001001
1100001001
1000001001
0000001001
0000001011
0100001011
0100001111

0000000000
0000000010
0100000010
0100000110
1100000110
1000000110
0000000110
0000000111
0100000111
0100001111

Table 5. Example 5 (0000000001, 1101000000)

R({=0 [h(i=1 |R(i=2 |RAK(>i=3
000000@01 | 00000001 | 0000000001| 0000000001
010000@01 | 1000@0O001 | 0000000000 0000000011
010000001 | 1000a0001 | 0100000000 0100000011
110000001 | 110000001 | 1100000000/ 1100000011
110100001 | 11010001 | 1101000000{ 1101000011
100100001 | 01010001 1111000011
000100001 | 00010001 1011000011
00010000 | 00010000 0011000011
010100000 | 10010000 0011000010
010100@00 | 1001@O000 0011000000
110100@00 | 1101@0O000 0111000000
1111000000
1101000000

Example 3 Assumem = k = 2, s= 0000000000, antd=
0001011101. Sinces = ¢; andCs # C;, we construct the
paths bycase 1 First, consider the construction Bf and
Pi. SinceM[1] = 00 andM;[1] = 11, we choosg = 2 for

i =0 as a key-bit of type 2. Sindds[2] = 00 andV;[2] =
01, we choosg = 3 fori =1 as a key-bit of type 1. Next,
consider pathB, andP;. SinceH (Ms[cs], Mt[ci]) = 1, from
the algorithm we havg¢= 2 andj’ = 3. The four paths from
nodesto nodet are shown in Table 3. The longest path is
Pp. |P| =H(0,93) 4+ 2% +4=13.

Example 4 Assumem= k =2, s= 0000000000, ant=
0100001111. Since; # ¢ we construct patiy andP;, by
case 2 SinceH(cs,¢) = 1, no signature is assigned for
Po. ForPy, sinceMg[2] = M;[2] = 00 we assigly = 2. The
four paths from nodeto nodet are shown in Table 4. The
longest path i®y. |Py| = H(0,15) +22 + 4+ |Z;| = 13.
Example 5 Assumem= k = 2, s= 0000000001, antd=
1101000000. We construct the patsandP; by case 2
and choosg = 2 for bothi =0 and 1. Sincego) = ct<1> and
c§1> = ct(o), we have|Zy| = |Z1| = 1. The four paths from
nodesto nodet are shown in Table 5. The longest path is
Ps. |Ps] = H(1,64) + 22 + 442 =12, whered(s),t()) =

d(s,t) + 4, and the value 2 is from the length of the class-
path (00:01:11).

Now we are ready to give the main result of this paper
in the following theorem.

Theorem 2. Given any two distinct nodes s and t in
MC(k,m), we can find k- m disjoint paths from s to t in
O(log? p) time such that the length of the paths is at most
H(st) + 2+ m+5, where p is the number of nodes in
MC(k,m), and Hs,t) is the Hamming distance between s
andt.

Proof: Following the algorithm, the proof is divided into
three cases. In the first case, sinceklmaths constructed
outside the clustets go through distinct clusters and there-
fore, cannot intersect each other or thegaths inside the
cluster constructed by the hypercube algorithm. Tie
paths in the cluster are disjoint since the cluster isran
cube.

In the second case, B has a key-bit of type 1 then
it is clear that they cannot intersect with any other paths
since no other path will change the value of that key-bit
following the shortest path principle. If the key-bits of the

two pathsP, andP; are of type 2, from the definition of type

2 key-bit, we know that the two paths cannot intersect each
other when passing the nodes in the hamiltonian cycle that
are neithelr:é,I> nor cé”. At nodecg) € Hy, pathP; updates

the values in field[c()] and the values in the fiell[c!)]

was partially updated only (the key-bit changed and other
bits unchanged). However, the values in the fielgt()]

for B is either unchanged or fully updated. Therefore, two
paths cannot meet at the nodes of clet8s Similarly, they

cannot meet at the nodes of clmé'%. Similar argument can
be applied to the casés<i,j < k+m-—1, orR (Pj) has
key-bitof type 2 ank < j <k+m—1(k<i; <k4+m-1,
assumingH (s,t) > 1. If H(s,t) = 1 andM{’ [cd = M¢[c(]
then the algorithm usep+# j as a key-bit. The two paths
s(j,j") —tU) ands'i) — t() constructed in the algorithm
are disjoint though both usg as a key-bit. We conclude
that them+ k paths are disjoint in this case.

In the third case, consider firBt, 0 <i <k—1. We
divide R into to parts,(s’) — w) and (w; — t). Since
the first part of the path includes a signature (exdgah
case 2.1), they should be disjoint following the same ar-
gument as in the second case (the argument is true even
one of the paths does not carry signature). Moreover, it is
also disjoint with the second part of other paths because
of its unique signature. The second parts of the paths
R, 0<i<k-—1, contain only the cross-edges that are iden-
tical to the disjoint class pathg, they are also disjoint.
Therefore, thé paths constructed by the algorithm are dis-
joint. Next, conside?, k <i <m+k—1. Since both
(s — w;) and(w; — t()) contain the naturally embedded
signature on dimension- k at fieldM|[cs] or M[c;] assum-
ing M{”[cs] # M[c:] andwi # s, by applying the similar
argument as in the second caBe;annot intersect with any
otherR with 0 < i’ < m+k—1,i’ #i. If w; = sl)) then we
haveR, = s1) — t() andP; = sli) — M. If M) = Mi[c]
then we usé # i as a key-bit. Itis easy to see that the above
arrangement does not affect the correctness of the previ-
ous argument foR andP; to be disjoint with other paths.
Therefore, we conclude that &H- m paths constructed in
this case are disjoint.

The length of the longest pafs — t) in the first case
is H(s,t) 4+ 6, whereH(s,t) is Hamming distance between
sandt. The length of the longest pats — t) in the sec-
ond case iH(s,t) + 2K+ 4. Similarly, the longest length
of the pathg(s — t) in the third case i$i(s,t) + 24+ 4+
maxo<i<k_1{|Z|} <H(st)+ 2K+ m+5. O

4 Concluding Remarks

In this paper, we gave an algorithm for finding tke-m
disjoint paths in the metacube. The metacube can be used
as an interconnection network for very large scale paral-
lel computers connecting hundreds of millions nodes with
up to 6 links per node. For this reason, the issues of dis-
joint paths and fault-tolerance in metacube is very impor-
tant. From the disjoint paths algorithm, any two nonfaulty

nodes in a metacube with up ke m— 1 faulty nodes can
be connected by a faulty-free path in the metacube.
Recently, much of the community has moved on
to lower-dimensional topologies such as meshes and tori.
However, the SGI Origin 2000, a fairly recent multiproces-
sor, does use a hypercube topology so a metacube could
be of use to industry. In order to connect 128 processors
with 6-link routers, an Origin2000 uses Cray Router. Fur-
thermore, multiple Origin2000 systems are connected into
an array to connect more than 128 processors. By using
the metacube architecture, the current 6-link routers can
connect much more processors directly without using Cray
Router. Generally, the metacube system can be built with
the same technology adopted in the Origin2000 system: the
key point is to design a 6-link router and connect router
board ports with link cables. Any application runnable on
Origin2000 is possibly runnable on metacube.

References

[1] K. Ghose and K. R. Desai. Hierarchical cubic networks.
IEEE Transactions on Parallel and Distributed Systems
6(4):427-435, April 1995.

[2] Q.-P.Gu and S. Peng. Optimal algorithms for node-to-node
fault tolerant routing in hypercubeShe Computer Journal
39(7):626-629, 1996.

[3] J. P. Hayes and T. N. Mudge. Hypercube supercomputers.
Proc. IEEE 17(12):1829-1841, Dec. 1989.

[4] J. Laudon and D. Lenoski, The SGI Origin 2000: A cc-
NUMA Highly Scalable Server. liProceedings of the 24th
Annual International Symposium on Computer Architec-
ture, pages 241-251, June 1997.

[5] Y. Liand S. Peng. Dual-cubes: a new interconnection net-
work for high-performance computer clusters.Aroceed-
ings of the 2000 International Computer Symposium, Work-
shop on Computer Architecturpages 51-57, December
2000.

[6] Y. Liand S. Peng. Fault-tolerant routing and disjoint paths
in dual-cube: a new interconnection network. Aroceed-
ings of the 2001 International Conference on Parallel and
Distributed Systempages 315-322. IEEE Computer Soci-
ety Press, June 2001.

[7] Y. Li, S. Peng, and W. Chu. Metacube — a new inter-
connection network for large scale parallel systerAsis-
tralian Computer Science Communicatior(3):29-36,
Jan. 2002.

[8] F. P. Preparata and J. Vuillemin. The cube-connected cy-
cles: a versatile network for parallel computati@ommun.
ACM, 24:300-309, May 1981.

[9] SGlI, Origin2000 Rackmount Owner’s Guid€07-3456-

003, http://techpubs.sgi.com/, 1997.

L. W. Tucker and G. G. Robertson. Architecture and appli-

cations of the connection machinEEE Computer21:26—

38, August 1988.

[11] B. Vanvoorst, S. Seidel, and E. Barscz. Workload of an
ipsc/860. InProceedings of the Scalable High-Performance
Computing Conferen¢@ages 221-228, 1994.

[12] S. G. Ziavras. RH: a versatile family of reduced hyper-
cube interconnection networkH=EE Transactions on Par-
allel and Distributed System5(11):1210-1220, November
1994.

[10]

