
The Thirteen IASTED International Conference on Parallel and Distributed Computing and Systems, Anaheim, USA, August 21-24, 2001, pp.266-271

Efficient Collective Communications in Dual-cube
Yamin Li, Shietung Peng

Department of Computer Science
Hosei University

Tokyo 184-8584 Japan

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

ABSTRACT
The binary hypercube, orn-cube, has been widely used as
the interconnection network in parallel computers. How-
ever, the major drawback of the hypercube is the increase
in the number of communication links for each node with
the increase in the total number of nodes in the system.
This paper introduces a new interconnection network for
large-scale parallel computers called dual-cube. This net-
work mitigates the problem of increasing number of links
in the large-scale hypercube network while keeps most of
the topological properties of the hypercube network. De-
sign of efficient routing algorithms for collective commu-
nications is the key issue for any interconnection networks.
In this paper, we show that collective communications can
be done efficiently in dual-cube.

KEY WORDS
Interconnection networks, hypercube, collective communi-
cation, broadcast and personalized communication

1. Introduction

The binary hypercube has been widely used as the inter-
connection network in a wide variety of parallel systems
such as Intel iPSC, the nCUBE [6], the Connection Ma-
chine CM-2 [18], and SGI Origin 2000 [17]. A hypercube
network of dimensionn contains up to 2n nodes and has
n edges per node. If uniquen-bit binary addresses are as-
signed to the nodes of the hypercube, then an edge con-
nects two nodes if and only if their binary addresses differ
in a single bit. Because of its elegant topological proper-
ties and the ability to emulate a wide variety of other fre-
quently used networks, the hypercube has been one of the
most popular interconnection networks for parallel com-
puter/communication systems.

However, the conventional hypercube has a major
shortage, that is, the number of edges per node in a system
increases logarithmically as the total number of nodes in
the system increases. Since the number of links is limited
to eight per node with current IC technology, the total num-
ber of nodes in a hypercube parallel computer is restricted
to several hundreds. Therefore, it is interesting to develop
an interconnection network which keeps most of topologi-
cal properties of the hypercube, and have more nodes in the
system than the hypercube with the same number of edges
per node.

Several variations of the hypercube have been pro-

posed in the literature. Some variations focused on the re-
duction of diameter of the hypercube, such as folded hy-
percube [1] and crossed cube [3]; some focused on the re-
duction of the number of edges of the hypercube, such as
cube-connected cycles [16] and reduced hypercube [19];
and some focused on the both, like hierarchical cubic net-
work [5]. Generally, the variations of the hypercube that re-
duce the diameter, e.g. crossed cube and hierarchical cube,
will not satisfy the following key property in the hypercube:
each node can be represented by a unique binary number
such that two nodes are connected by an edge only if the
two binary numbers differ in one bit. This key property is
at the core of many algorithmic designs for efficient routing
and communication.

In this paper, we propose a new interconnection net-
work, calleddual-cube. The dual-cube shares the desired
properties of the hypercube (e.g., the key property of the
hypercube mentioned above), and increases tremendously
the total number of nodes in the system compared with the
hypercube of the same node degree. The size of the dual-
cube can be as large as thirty thousands with up to eight
links per node. It is practically important to refine the hy-
percube networks such that the size of the network can be
increased while the number of the links per node is limited
by the technology. Design of efficient routing algorithms
for collective communications is the key issue for any in-
terconnection networks. In this paper, after introducing the
architecture of the dual-cube, we show that collective com-
munications can be done efficiently in dual-cube.

2. Dual-cube Interconnection Network
An r-connected dual-cubeFr [12] is an undirected graph on
the node set{0,1}2r−1 such that there is an edge between
two nodesu = (u2r−1 . . .u1) andv = (v2r−1 . . .v1) in Fr if
and only if the following conditions are satisfied:

(1) u andv differ exactly in one bit positioni.
(2) if 1≤ i ≤ r−1 thenu2r−1 = v2r−1 = 0.
(3) if r ≤ i ≤ 2r−2 thenu2r−1 = v2r−1 = 1.
Intuitively, the set of the nodesu of form

(0u2r−2 . . .ur ∗ . . .∗), where ∗ means “don’t care”, con-
stitutes an(r − 1)-dimensional hypercube. We call these
hypercubesclustersof class 0. Similarly, the set of the
nodesu of form (1∗ . . .∗ur−1 . . .u1) constitutes an(r−1)-
dimensional hypercube, and we call them clusters of class
1. The edge connects two nodes in two clusters of distinct
class is calledcross-edge. In other word,〈u,v〉 is a cross-

266

Table 1. Hypercube v.s. Dual-cube

Network Degree Diam. Cost Avg. distance Bisec. width # of edges

Hypercube n n n2 n/2 2n/2 2nn
Dual-cube (n+1)/2 n+1 (n+1)2/2 n/2+1−1/2(n−1)/2 2n/4 2n(n+1)/2

edge if and only ifu andv differ at the leftmost bit position
only.

We divide the binary representation of a node into
three parts: Part I is the rightmostr −1 bits, part II is the
next r−1 bits, and part III is the leftmost bit. Part III is a
class indicator. For the nodes in a cluster of class 0 (class
1), part I (part II) is callednode IDand part II (part I) is
calledcluster ID. The cluster contains nodeu is denoted as
Cu. For any two nodesu andv in Fr , Cu = Cv if and only if
u andv are in the same cluster.

Table 1 summarizes the degree, diameter, cost, av-
erage node distance, and bisection width of the hypercube
and the dual-cube network, assuming that the two networks
have the same number of nodes which is 2n, wheren is an
odd integer [12].

3. Model of Communication

Collective communication is the key issue in message-
passing parallel computers or networks [2] [7] [8] [11] [13]
[15]. Collective communication is required in load bal-
ancing, event synchronization, and data exchange. Based
on the number of sending and receiving processors, these
communications can be classified into one-to-many, one-
to-all, many-to-many, and all-to-all. The nature of the mes-
sages to be sent can be classified as personalized or non-
personalized (multicast or broadcast). The all-to-all per-
sonalized communication (total exchange) is at the heart
of numerical applications. In this paper, we will present
efficient algorithms for collective communication in dual-
cube.

An important metric used to evaluate efficiency of
communication iscommunication latencyor transmission
time. The transmission time depends on many factors such
as contentions, switching techniques, network topologies
etc. Therefore, we first define the communication model
used in this paper.

We assume that the communication links are bidirec-
tional; that is, two directly-connected processors can send
messages to each other simultaneously. We also assume the
processor-bounded model (one-port model) in which each
processor can use only one link at a time. The port model
of a network system refers to the number of internal chan-
nels at each node. In order to reduce the complexity of
communication hardware, many systems support one-port
communication architecture, in which each node can ac-
cess the network through a single input port and a single
output port. Many existing networks use one-port architec-
ture. We also assume the linear cost model [4] in which the
transfer time for a message is linearly proportional to the
length of the message.

We assume cut-through routing strategy [9], in which
each message is serialized into a sequence of pieces and is
sent in a pipeline fashion. The router can start forwarding
the header and the following data bytes as soon as rout-
ing decisions have been made and the output buffer is free.
Since the message can cut through to the input of the next
router before the complete message has been received at the
current router, this switching technique is referred as virtual
cut-through switching. For long message, the pipelining ef-
fect of cut-through routing reduces the effect of path length
on network. The predominant wormhole routing [14] is
just a special form of the cut-through routing scheme. Un-
der the cut-through routing scheme and in the absence of
blocking, the transmission time for a message of lengthm
to be sent to a node of distanced is ts+mtw +dth, wherets
is startup latency, the time required for the system to handle
the message at the source and destination nodes,tw is the
per-word transfer time (1/tw is the bandwidth of the com-
munication links),th is the per-hop time, the time to switch
an intermediate node. Through this paper, we will use the
above formula for estimating the communication time of
the proposed routing algorithms.

In order to simplify the description of the rout-
ing algorithms, we adopt the following notation. Ther
neighbor nodes ofs, s(i),1 ≤ i ≤ r, are denoted as fol-
lows. Assumes is of class 0 ands = (0a2r−2 . . .a1), then
s(i) = (0a2r−2 . . .ai+1aiai−1 . . .a1), where 1≤ i ≤ r − 1,
ands(r) = (1a2r−2 . . .a1). Assumes is of class 1 ands =
(1a2r−2 . . .a1), then, s(i) = (1a2r−2 . . .a j+1a ja j−1 . . .a1),
where r ≤ j ≤ 2r − 2 and i = j − (r − 1), and s(r) =
(0a2r−2 . . .a1). Each node in anFr is identified by
its unique (2r − 1)-bit address, id. Each id con-
tains three parts: class_id (1-bit), cluster_id ((r −
1)-bit), and node_id ((r − 1)-bit). That is, id =
{class_id, cluster_id, node_id}. The bit-position of
the cluster_id and node_id depends on theclass_id. if
class_id = 0 (1) then thenode_id (cluster_id) is the right-
mostr−1 bits, and thecluster_id (node_id) is the next (to
the left)r−1 bits.

4. One-to-All Broadcast and Personalized
Communication

In this section, we discuss one-to-all broadcast and one-to-
all personalized communication.

Parallel algorithms often require a single processor to
send identical data to all other processors or to a subset
of them. This operation is known as one-to-all broadcast
or one-to-many multicast. In our communication model,
a message is not routed in parts along separate paths and
communication is allowed on only one link of each pro-

267

cessor at a time. It can be shown that one-to-all broadcast
cannot be performed in less than(ts + mtw) logp time on
any architecture, wherep is the number of processors [10].

We show an algorithm which performs one-to-all
broadcast in dual-cube efficiently. The algorithm for broad-
casting from a sources works as follows: Assume thatCs

is of class 0 (the case thatCs is of class 1 can be done sim-
ilarly). The sources first sends the message tos′ = s(r)

through a cross-edge. Then,s ands′ broadcast simultane-
ously the message to all nodes inCs andCs′ using binomial
trees ofCs andCs′ with rootss ands′, respectively. Next,
every nodeu∈Cs\{s} and every nodeu′ ∈Cs′ \{s′} send
the message tov andv′ through a cross-edge, respectively.
Finally, everyv andv′ broadcast the message to all other
nodes inCv andCv′ . The algorithm is listed below.

Algorithm 1 (One_To_All_Bcast (my_id, r,s,msg))

1. begin /* The source of the broadcast is node(s) */
/* Stage 1: Broadcast to the nodes inCs andCs(r) */

2. node(s) sendmsgto node(s(r))
3. for i = 1 to r−1 do
4. if (my_cluster_id = cluster_id of s) AND

(the rightr− i bits ofmy_node_id = the right
r− i bits of node_id of s) then

5. sendmsgto node(my_id(i));
6. endfor

/* Stage 2: Broadcast to nodes in all other clusters */
7. if (my_cluster_id = thecluster_id of s) AND

(my_node_id 6= node_id of s) then
8. sendmsgto node(my_id(r));
9. for i = 1 to r−1 do

10. if (my_cluster_id 6= cluster_id of s) AND
(the rightr− i bits ofmy_node_id = the right
r− i bits of node_id of s) then

11. sendmsgto node(my_id(i));
12. endfor
13. end.

From the above algorithm, the broadcasting is com-
pleted in 1+(r−1)+1+(r−1) = 2r steps. Therefore, the
total communication timeTone−to−all−b = (ts + mtw)(1 +
logp), where logp = log2 p, andp = 22r−1.

In one-to-all personalized communication, a single
node sends a unique message of sizem to every other
node. Since the source node transmitsm words for each
of the otherp−1 nodes, the lower bound on the commu-
nication time of one-to-all personalized communication is
m(p− 1)tw. This lower bound is independent of the ar-
chitecture or routing scheme. The routing algorithm for
the one-to-all personalized communication in dual-cube is
similar to the one-to-all broadcast described above. Ini-
tially, the source node,s, contains all the messages. In the
first communication step, the nodes transfers half of the
messages tos′ = s(r) through a cross-edge. Then,s ands′

simultaneously send the messages to all nodes inCs and
Cs′ using binomial trees ofCs andCs′ with rootss ands′,
respectively. After each communication step, the sizes of

the messages to be sent are reduced by half. At the end
of this stage, each nodeu ∈ Cs−{s} and u′ ∈ Cs′ −{s′}
have their message and the messages of all nodes in clus-
ter Cv and Cv′ , wherev = u(r) and v′ = (u′)(r). At the
second stage, nodesu and u′ send the messages of size
2r−1 to v and v′ through a cross-edge, respectively. Fi-
nally, v and v′ send the messages to all nodes inCv and
Cv′ through the binomial trees ofCv andCv′ , respectively.
The time for the one-to-all personalized communication
Tone−to−all−p = rts+∑r

i=12r+i−2mtw+rts+∑r
i=12i−1mtw =

2rts+(22r−1−1)mtw = (1+ logp)ts+(p−1)mtw.

5. All-to-all Broadcast
All-to-all broadcast is a generalization of one-to-all broad-
cast in which all nodes simultaneously initiate a broadcast.
A node sends the samem-word message to every other
node, but different nodes may broadcast different mes-
sages. The communication pattern of all-to-all broadcast
can be used to perform some other operations, such as re-
duction and prefix sums.

The lower bound for the communication time of all-
to-all broadcast for parallel computers on which a node
can communicate on only one of its ports at a time is
(p− 1)mtw, wherep is the number of nodes. This is be-
cause each node receives at least(p−1)m words of data,
regardless of the architecture or routing scheme.

An efficient way to perform all-to-all broadcast is to
perform all p one-to-all broadcasts simultaneously so that
all messages traversing the same path at the same time are
concatenated into a single message whose size is the sum
of the sizes of individual messages.

The algorithm for all-to-all broadcast (see algo-
rithm2) in dual-cube can be described in three stages. In
the first stage, the broadcasts are done inside each cluster.
In the second stage, each node in a cluster of class 1 (0)
sends the identical message to a node in a cluster of class
0 (1), and then, the received message is broadcasted inside
the cluster. After this stage, each node has messages from
all other nodes except those in the different clusters of the
same class. Finally, in the last stage, each node gets the
messages of the nodes in other clusters of the same classes
from the neighbor through the cross edge.

Algorithm 2 (All_To_All_Bcast (my_id,Mmy_id , r, result))

1. begin /* result, empty initially,
contains all(p−1) messages at the end */
/* Stage 1: Broadcast inside the cluster */

2. for i = 1 to r−1 do
3. partner_id = (my_class_id,my_cluster_id,

my_node_id XOR 2i−1);
4. sendMmy_id to partner;
5. receiveMpartner_id from partner;
6. Mmy_id = Mmy_id ∪Mpartner_id ;
7. endfor

/* Stage 2: Broadcast to clusters of the other class */
8. partner_id = (my_class_id XOR 1,my_cluster_id,

my_node_id);

268

9. sendMmy_id to partner;
10. receiveMpartner_id from partner;
11. result= Mmy_id ;
12. temp= Mpartner_id ;
13. Mmy_id = Mpartner_id ;
14. for i = 1 to r−1 do
15. partner_id = (my_class_id,my_cluster_id,

my_node_id XOR 2i−1);
16. sendMmy_id to partner;
17. receiveMpartner_id from partner;
18. Mmy_id = Mmy_id ∪Mpartner_id ;
19. endfor
20. result= result∪Mmy_id ;
21. Mmy_id = Mmy_id \ temp;

/* Stage 3: Include the messages from other clusters
of the same class */

22. partner_id = (my_class_id XOR 1,my_cluster_id,
my_node_id);

23. sendMmy_id to partner;
24. receiveMpartner_id from partner;
25. result= result∪Mpartner_id ;
26. end.

The time it takes to complete the 1st stage isT1 =
∑r−1

i=1(ts + 2i−1mtw) = (r −1)ts + (2r−1−1)mtw. The time
it takes to complete the 2nd stage isT2 = ts + 2r−1mtw +
∑r−1

i=1(ts + 2r+i−2mtw) = rts + 22r−2mtw. The time it takes
to complete the 3rd stage isT3 = ts + (22r−2− 2r−1)mtw.
Therefore, the total time to complete the all-to-all broadcast
is Tall−to−all−b = 2rts + (22r−1− 1)mtw = (1+ logp)ts +
(p−1)mtw.

6. All-to-All Personalized Communication
In all-to-all personalized communication, each node sends
a distinct message of sizem to every other node. The total
number of messages isp(p− 1). Because the number of
links in dual-cube is just about half compared to the corre-
sponding traditional hypercube, we must find a way to per-
form all-to-all personalized communication with as shorter
time as possible. We will describe sending rule, routing
strategy, and time analysis for the all-to-all personalized
communication in dual-cube in the following sub-sections.

6.1 All-to-All Personalized Sending Rule
We adopt the strategy that, at one communication step, ev-
ery node sends one message to its destination simultane-
ously. There are totallyp−1 communication steps. Similar
to all-to-all broadcast, we divide thesep−1 steps into three
stages. In the first stage, each node sends 2r−1−1 messages
to those nodes which are located in the same cluster. This
can be done in the same manner as the hypercube does. In
the second stage, each node sends messages to those clus-
ters located in different classes. The total number of mes-
sages one node sends in this stage is 2r−1×2r−1 because
there are 2r−1 clusters of size 2r−1. In the last stage, we
route messages to the different clusters with the same class
as the sender. The number of messages one node sends in

this stage is(2r−1−1)×2r−1. The algorithm is described
below. The procedureRouting (r, my_id, partner) is given
in the next subsection (Algorithm 4).

Algorithm 3 (All_To_All_Pers (r, my_id, Mmy_id,∗))

1. begin /* Ms,t is the message from node(s) to node(t) */
/* stage 1: within cluster */

2. for i = 1 to 2r−1−1 do
3. partner= (my_class_id,my_cluster_id,

my_node_id XOR i);
4. Routing (r, my_id, partner) and

sendMmy_id,partner to partner;
5. endfor

/* stage 2: to clusters of different classes */
6. for i = 0 to 2r−1−1 do
7. for j = 0 to 2r−1−1 do
8. partner= (my_class_id XOR 1,

my_cluster_id XOR j,my_node_id XOR i);
9. Routing (r, my_id, partner) and

sendMmy_id,partner to partner;
10. endfor
11. endfor

/* stage 3: to different clusters of the same classes */
12. for i = 1 to 2r−1−1 do
13. for j = 0 to 2r−1−1 do
14. partner= (my_class_id,my_cluster_id XOR i,

my_node_id XOR j);
15. Routing (r, my_id, partner) and

sendMmy_id,partner to partner;
16. endfor
17. endfor
18. end

In the first stage, node(my_id) and node(partner) ex-
change data each other, wherepartner = my_id XOR i.
Notice that the node IDs are located in different positions
for different classes.

In the second stage, it sends the data in the (i ×
2r−1 + j)th step to the node of different class with the
cluster ID = my_cluster_id XOR j, and the node ID =
my_node_id XOR i. It is no longer true that two nodes ex-
change data each other. For example, in the (i = 0, j = 1)th
step, node 00000 sends data to node 10100, but receives
data from 10001 (node 10100 sends data to node 00101).
Actually, once we decided the rule for sending, a node can
only receive data arriving it. The reason why exchanging
data does not work is that the message is sent from one
class to the other class while the field meaning of the ad-
dresses is different. We can say that ifmy_cluster_id =
my_node_id for both receiver and sender, they exchange
data each other. We will introduce a congestion-free sched-
ule by following this sending rule.

In the third stage, all pairs exchange data again.
Node(my_id) exchanges data with the node with the
cluster ID = my_cluster_id XOR i, and the node ID =
my_node_id XOR j.

Each node sends 2r−1−1 messages in the first stage,
2r−1×2r−1 messages in the second stage, and (2r−1−1)×

269

2r−1 messages in the last stage. The total number of mes-
sages each node sends inp−1 steps is 22r−1−1 = p−1,
one for each step.

6.2 All-to-All Personalized Routing
The basic building block of the dual-cube is the (r − 1)-
cube. All-to-all personalized routing in the (r−1)-cube is
simple. We first choose the destination node by the rule
described in the previous sub-section. For the first stage,
source nodes = node(my_id) exchanges data with desti-
nation nodet = node(my_id XOR i) in the ith step. The
Hamming distance betweens andt is s XOR t = i, that is,
a message travels froms to t must pass through at leastl
links wherel equals the number of non-zero bits in the bi-
nary representation ofi. For example, in a 4-link dual cube,
there are 27, or 128 nodes, forming 16 clusters with each
has 8 nodes. The basic building block is a 3-cube. For rout-
ing within 3-cube, it takes 7 steps. In step 1 (001 in binary
representation), step 2 (010), or step 4 (100) , a message
traveling through one link will arrive destination; step 3, 5,
or 6 travels 2 links; step 7 travels 3 links, node 0 to node 7
for instance. There should be more than one solution for a
message routing from source to destination. Through this
paper, we follow theascending routingstrategy, by which
the least significant non-zero bit ofi is chosen as the first
dimension for routing, and so on.

For the second and the third stages, the routing is
more complicate than the first stage because these stages
use cross edges and even other clusters for just traveling
through. The following algorithm shows the all-to-all per-
sonalized routing in dual-cube.

Algorithm 4 (Routing (r, s, t))

1. begin
2. diffBits = sXOR t;
3. current_id = s; /* current node = s */
4. route= current_id;
5. case 1:Cs = Ct :
6. routingCluster (); /* internal routing */
7. case 2:class_id of s 6= class_id of t:
8. routingCluster (); /* routing in Cs */
9. routingCrossEdge (); /* go through cross edge */

10. routingCluster (); /* routing in Ct */
11. case 3:Cs 6= Ct AND class_id of s= class_id of t:
12. routingCrossEdge (); /* go through cross edge */
13. routingCluster (); /* routing in Cs′ */
14. routingCrossEdge (); /* go through cross edge */
15. routingCluster (); /* routing in Ct */
16. end
17. ProcedureroutingCluster ()
18. begin
19. for i = 0 to r−1 do
20. go= the ith bit of diffBits
21. if (go 6= 0) then
22. current_id = current_id XOR go;
23. route= routeconcatcurrent_id;
24. endfor

25. end
26. ProcedureroutingCrossEdge ()
27. begin
28. current_id = current_id(r);
29. route= routeconcatcurrent_id;
30. end

Routing in the first stage is simple (line 6). In the
second stage, each node sends a distinct message to every
other node in the other classes. It uses cross edges. In the
first step, each node directly send a message through a cross
edge to the neighborhood node in a cluster of the other
class, then to every other node in that cluster. The sending
order is determined with the sending rule described in the
previous sub-section. At this point, 1/2r−1 work finished
because there are 2r−1 such clusters. For other clusters, the
source node needs to route messages within its own cluster
first, then go through a cross edge, and finally route within
the destination cluster (line 8–10). Routing within a cluster
is the same as the first stage.

In the third stage (line 12–15), a message travels
through a cluster of different class to a destination cluster
whose class is the same as that of source node.

6.3 Timing Analysis of All-to-All Personal-
ized Communication

The time it takes to send messages to the nodes in the
same clusters (stage 1) isT1 = ∑r−1

i=1(ts+mtw + ith)
(r−1

i

)

=
(2r−1−1)(ts+mtw)+gth, whereg = 1

2(r−1)2r−1, the to-
tal distance for a node sends 2r−1− 1 messages to other
2r−1− 1 nodes within the same cluster. Next, consider
sending messages to the nodes located in different classes.
There are 2r−1 such clusters with each has 2r−1 nodes.
Each message travels through a cross edge, the distance is
2r−1×2r−1 = 22r−2. The distance of routing within 2r−1

clusters is 2r−1g, and, before going through cross edges, it
needs to route in the cluster of the source node. This dis-
tance is also 2r−1g. Therefore, the total time in this stage is
T2 = 22r−2(ts+mtw)+(22r−2 +2rg)th

For sending messages to the different clusters of the
same class, the timeT3 is shown below. The sending proce-
dure consists of four parts: going out through a cross edge,
routing within a cluster of the different class (intermedi-
ate cluster), going out again to the destination clusters, and
routing within the destination clusters. Notice that there
are only 2r−1−1 clusters which a node sends messages to
and each message will travel through two cross edges. The
item g(2r−1− 1) in T3 equation is the distance for rout-
ing within 2r−1− 1 destination clusters,g2r−1 is the dis-
tance for routing within 2r−1 intermediate clusters whose
class is different from the class of the source node.T3 =
2r−1(2r−1−1)(ts+mtw)+((2r(2r−1−1)+(2r −1)g)th

The total time to complete the all-to-all personalized
communication is the sum ofT1, T2, andT3. Tall−to−all−p =
(22r−1−1)(ts+mtw)+((r + 1

2)22r−1−2r) th = (p−1)(ts+
mtw) + (p(1

2 lopp+ 1)−
√

2p) th wherep = 22r−1, the to-
tal number of nodes. Comparing to the time of traditional

270

Table 2. Communication Times: Hypercube v.s. Dual-cube

Comm. Pattern Hypercube Dual-cube

Tone−to−all−b logp(ts+mtw) (1+ logp)(ts+mtw)
Tone−to−all−p (logp)ts+(p−1)mtw (1+ logp)ts+(p−1)mtw
Tall−to−all−b (logp)ts+(p−1)mtw (1+ logp)ts+(p−1)mtw
Tall−to−all−p (p−1)(ts+mtw)+(p/2(logp))th (p−1)(ts+mtw)+(p/2(2+ logp)−

√
2p)th

hypercube for performing all-to-all personalized communi-
cation, which is(p−1)(ts + mtw) + 1

2 p lopp th, our result
is quite satisfactory because the dual-cube uses about half
links in comparison to a corresponding hypercube. From
the total time equation, we know that the average distance
of the dual-cube is((r + 1

2)22r−1−2r)/22r−1 = r + 1
2−

1
2r−1

while the average distance of (2r−1)-cube isr− 1
2.

The communication times of our routing algorithms
for collective communication are summarized and com-
pared to that of the hypercube in Tab. 2.

7. Conclusions

In this paper, we proposed a new interconnection network,
dual-cube, and showed efficient routing algorithms for col-
lective communication in dual-cube. The proposed dual-
cube increases tremendously the total number of nodes in
the system compared to the hypercube: If the number of
links per node isn, the conventional hypercube can connect
up to 2n nodes, the dual-cube can connect 22n−1 nodes, i.e.,
2n−1 times large than hypercube. More importantly, the
dual-cube keeps almost the desired properties of the hyper-
cube and reduces the cost to about half compared to hy-
percube. The efficiency of the routing algorithms for all
kinds of communication patterns is almost the same as hy-
percubes with much less links (about half of the number of
links in hypercubes).

Recently, much of the community has moved on
to lower-dimensional topologies such as mesh and torus.
However, the SGI Origin 2000, a fairly recent multiproces-
sor, does use a hypercube topology so a dual-cube could be
of use to industry.

References

[1] A. E. Amawy and S. Latifi. Properties and performance of
folded hypercubes.IEEE Transactions on Parallel and Dis-
tributed Systems, 2(1):31–42, 1991.

[2] J. Duato, S. Yalamanchili, and L. Ni.Interconnection net-
works: an engineering approach. IEEE Computer Society
Press, 1997.

[3] Kemal Efe. The crossed cube architecture for parallel com-
putation. IEEE Transactions on Parallel and Distributed
Systems, 3(5):513–524, Sep. 1992.

[4] A. M. Farley. Minimum-time broadcast networks.Net-
works, 10:59–70, 1980.

[5] K. Ghose and K. R. Desai. Hierarchical cubic networks.
IEEE Transactions on Parallel and Distributed Systems,
6(4):427–435, April 1995.

[6] J. P. Hayes and T. N. Mudge. Hypercube supercomputers.
Proc. IEEE, 17(12):1829–1841, Dec. 1989.

[7] C. C. Huang and P. K. McKinley. Communication issues in
parallel computing across atm networks.IEEE Parallel and
Distributed Technology, 1991.

[8] S. L. Johnson and C.-T. Ho. Optimum broadcasting and
personalized communication in hypercubes.IEEE Transac-
tions on Computers, 38(9):1249–1268, 1989.

[9] P. Kermani and L. Kleinrock. Virtual cut-through: a new
communication switching technique.Computer Networks,
13:267–286, 1979.

[10] V. Kumar, A. Grama, A. Gupta, and G. Karypis.Intro-
duction to parallel computing: design and analysis of al-
gorithms. Benjamin/Cummings Press, 1994.

[11] Y. Lan, A. H. Esfahanian, and L. M. Ni. Multicast in hyper-
cube multiprocessors.Journal of Parallel and Distributed
Computing, 16(1):30–41, 1990.

[12] Y. Li and S. Peng. Dual-cubes: a new interconnection net-
work for high-performance computer clusters. InProceed-
ings of the 2000 International Computer Symposium, Work-
shop on Computer Architecture, pages 51–57, ChiaYi, Tai-
wan, December 2000.

[13] P. K. McKinley, Y. J. Tsai, and D. Robinson. Collec-
tive communication in wormhole-routed massively parallel
computers.IEEE Transactions on Parallel and Distributed
Systems, 7(2):184–190, 1996.

[14] L. Ni and P. McKinley. A survey of wormhole routing tech-
niques in direct networks.IEEE Computer, 26(2):62–76,
1993.

[15] J. G. Peters and M. Syska. Circuit-switched broadcasting
in torus networks.IEEE Transactions on Parallel and Dis-
tributed Systems, 7(3):246–255, 1996.

[16] F. P. Preparata and J. Vuillemin. The cube-connected cy-
cles: a versatile network for parallel computation.Commun.
ACM, 24:300–309, May 1981.

[17] SGI. Origin2000 Rackmount Owner’s Guide, 007-3456-
003. http://techpubs.sgi.com/, 1997.

[18] L. W. Tucker and G. G. Robertson. Architecture and appli-
cations of the connection machine.IEEE Computer, 21:26–
38, August 1988.

[19] S. G. Ziavras. Rh: a versatile family of reduced hyper-
cube interconnection networks.IEEE Transactions on Par-
allel and Distributed Systems, 5(11):1210–1220, November
1994.

271

