
Disjoint-Paths and Fault-Tolerant Routing on Recursive Dual-Net

Yamin Li and Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin, speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract—The recursive dual-net is a newly proposed in-
terconnection network for of massive parallel computers. The
recursive dual-net is based on a recursive dual-construction of
a base network. A k-level dual-construction for k > 0 creates a
network containing (2n0)2k/2 nodes with node-degree d0+k,
where n0 and d0 are the number of nodes and the node-degree
of the base network, respectively. The recursive dual-net is node
and edge symmetric and can contain huge number of nodes
with small node-degree and short diameter. Disjoint-paths
routing and fault-tolerant routing are fundamental and critical
issues for the performance of an interconnection network. In
this paper, we propose efficient algorithms for disjoint-paths
and fault-tolerant routings on the recursive dual-net.

Keywords-interconnection network; disjoint paths; fault-
tolerant routing;

I. INTRODUCTION

In massively parallel processor (MPP), the interconnec-
tion network plays a crucial role on the issues such as
communication performance, hardware cost, computational
complexity, fault-tolerance, etc. Much research has been
reported in the literatures for interconnection networks that
can be used to connect parallel computers of large scale (see
[1], [2], [3] for the review of the early work). The following
two categories have attracted a great research attention. One
is the hypercube-like family that has the advantage of short
diameters for high-performance computing and efficient
communication [4], [5], [6], [7], [8]. The other is 2D/3D
mesh or torus that has the advantage of small and fixed node-
degrees and easy implementations. Traditionally, most MPPs
in the history including those built by NASA, CRAY, FGPS,
IBM, etc., use 2D/3D mesh or torus or their variations with
extra diagonal links. The recursive networks also have been
proposed as effective interconnection networks for parallel
computers of large scale. For example, the WK-recursive
network [9], [10] is a class of recursive scalable networks. It
offers a high-degree of regularity, scalability, and symmetry
and has a compact VLSI implementation.

Recently, due to the advance in computer technologies, the
community of supercomputers rises competition to construct
high-performance supercomputers containing millions of
nodes [11]. For such a very-large-scale parallel computer,
the traditional interconnection networks such as hypercube

or mesh networks will have either large node-degree or long
diameter. New interconnection networks that have the merits
of traditional networks such as node and edge symmetry and
recursive structure etc., and also have small node-degree and
short diameter are in great demand.

In this paper, we first present a new interconnection
network, called Recursive Dual-Net (RDN) [12]. A recursive
dual-net is based on a recursive dual-construction of a base
network. The dual-construction extends a network with n
nodes and node-degree d to a network with 2n2 nodes
and node-degree d + 1. The k-level RDN is obtained by
recursively applying dual-construction k time starting from
a symmetric base-network B. The recursive dual-net has
the all the merits mentioned above and can connect a huge
number of nodes with just a small number of links per node.
It is not difficult to construct a recursive dual-net with 50
millions of nodes that has 5 links per node and its diameter
equals to 30. We show some topological properties of the
recursive dual-net. Then we give the basic routing algorithm
for the recursive dual-net.

The main contributions of this paper are the disjoint-paths
and fault-tolerant routing algorithms in recursive dual-net.
Let d0 be the node-degree of the symmetric base-network B.
Given two nodes s and t in a recursive dual-net RDNk(B)
with a base network B such that, for any two nodes in B,
there are d0 disjoint paths connecting them in O(d2

0) time,
we propose an O((d0+k)2) time algorithm for finding d0+k
disjoint paths connecting s and t. Given two nonfaulty nodes
s and t and up to d0 + k − 1 faulty nodes in RDNk(B)
with a base network B such that, for any two nonfaulty
nodes and up to d0 − 1 faulty nodes in B, there exists a
fault-free path connecting them in O(d0) time, we propose
a fault-tolerant routing algorithm that connecting s and t by
a fault-free path in O(d0 + k) time. Finally, we propose a
heuristic fault-tolerant routing algorithm in RDNk(B) for
arbitrary number of faulty nodes. The algorithm can find a
fault-free algorithm between two nonfaulty nodes with very
high probability.

The rest of this paper is organized as follows. Section 2
describes the recursive dual-net in details. Sections 3 gives
the disjoint-paths and fault-tolerant routing algorithms on a
recursive dual-net. In Section 4, we propose an efficient and

practical fault-tolerant algorithm that can finds a fault-free
path for arbitrary number of faulty nodes on a recursive dual-
net. Simulation results show that the proposed algorithm can
find a fault-free path on any two nonfaulty nodes on an
RDN2(B(3)) containing up to 150 faulty nodes with very
high probability. Section 5 concludes the paper.

II. RECURSIVE DUAL-NET

Let G be an undirected graph. The size of G, denoted
as |G|, is the number of vertices. A path from node s to
node t in G is denoted by s → t. The length of the path
is the number of edges in the path. For any two nodes s
and t in G, we denote D(s, t) as the length of a shortest
path connecting s and t. The diameter of G is defined as
D(G) = max{D(s, t)|s, t ∈ G}. For any two nodes s and
t in G, if there is a path connecting s and t, we say G is a
connected graph.

Suppose we have a symmetric connected graph B and
there are n0 nodes in B and the node degree is d0. A Recur-
sive Dual-Net RDN(B), also denoted as RDNk(B(n0)),
can be recursively defined as follows:

1) RDN0(B) = B is a symmetric connected graph with
n0 nodes, called base network;

2) For k > 0, an RDNk(B) is constructed from
RDNk−1(B) by a dual-construction as explained
below (also see Figure 1).

RDNk−1(B) RDNk(B)

type
0

type
1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Figure 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as
a cluster of level k and nk−1 = |RDNk−1(B)|. An
RDNk(B) is a graph that contains 2nk−1 clusters of level
k as subgraphs. These clusters are divided into two sets with
each set containing nk−1 clusters. Each cluster in one set is
said to be of type 0, denoted as C0

i , where 0 ≤ i ≤ nk−1−1
is the cluster ID. Each cluster in the other set is of type 1,
denoted as C1

j , where 0 ≤ j ≤ nk−1−1 is the cluster ID. At
level k, each node in a cluster has a new link to a node in a
distinct cluster of the other type. We call this link cross-edge
of level k. By following this rule, for each pair of clusters

C0
i and C1

j , there is a unique edge connecting a node in C0
i

and a node in C1
j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there

are nk−1 nodes within each cluster RDNk−1(B).

Figure 2. A Recursive Dual-Net RDN1(B(3))

We give two simple examples of recursive dual-nets
with k = 1 and 2, in which the base network is a
ring with 3 nodes, in Figure 2 and Figure 3, respectively.
Figure 2 depicts an RDN1(B(3)) network. There are 3
nodes in the base network, therefore the number of nodes
in RDN1(B(3)) is 2 × 32, or 18. Figure 3 shows the
RDN2(B(3)) constructed from the RDN1(B(3)) in Fig-
ure 2. We did not show all the nodes in the figure. The
number of nodes in RDN2(B(3)) is 2× 182, or 648.

Similarly, we can construct an RDN3(B(3)) containing
2 × 6482, or 839,808 nodes with node-degree of 5 and
diameter of 22. In contrast, the 839,808-node 3D torus
machine (adopt by IBM Blue Gene/L [13]) configured as
108×108×72 nodes, the diameter is equal to 54+54+36 =
144 with a node degree of 6.

We can see from the recursive dual-construction described
above that an RDNk(B) is a symmetric connected network
with node-degree d0 +k, where d0 is the node-degree of the
base network B. The number of nodes nk in RDNk(B)
satisfies the recurrence nk = 2n2

k−1 for k > 0. Solving the
recurrence, we get nk = (2n0)2k/2.

u

u′

w

w′

v

Dk−1

Dk−1

1 1

Figure 4. The diameter of the Recursive Dual-Net

Concerning the diameter Dk of RDNk(B), we know
that the worst-case (the longest one) for the shortest path
P (u, v) connecting any two nodes u and v in RDNk(B) is
as follow: u and v are of the same type and path P = u→
u′ → w → w′ → v, where u → u′ and w → w′ are cross-
edges of level k, and |u′ → w| = |w′ → v| = Dk−1, as
shown as in Figure 4. Therefore, the diameter of RDNk(B)

Figure 3. A Recursive Dual-Net RDN2(B(3))

satisfies the recurrence Dk = 2Dk−1 +2 for k > 0. Solving
the recurrence, we get Dk = 2kD0 + 2k+1 − 2, where D0

is the diameter of the base network.
The bisection bandwidth is important for fault-tolerance.

Next, we investigate the bisection bandwidth of the
RDNk(B) for k ≥ 1.

From the dual-construction, we know that there is no link
between the clusters of level k that are of the same type.
Therefore, the minimum number of links those removal will
disconnect two halves occurs when both halves contain equal
numbers of clusters of type 0 or 1. That is, the minimum
number of links those removal will disconnect two halves
equals to half of the total number of cross-edges of level k
which is d(2n0)2k/8e.

Notice that if n0 is odd and k = 1 we should divide the
RDN into two halves such that one half contains bn0/2c (or
dn0/2e) type 0 clusters and dn0/2e (or bn0/2c) type 1 clus-
ters. For example, the bisection bandwidth of RDN1(B(3))
is d62/8e = d9/2e = 5.

We summarize the discussion above about the fundamen-
tal properties of the Recursive Dual-Net in the following
theorem.

Theorem 1: Assume that the base network B is a sym-
metric graph with size n0, node-degree d0, and the diameter
D0. Then, the size, the node-degree, the diameter and the
bisection bandwidth of RDNk(B) are (2n0)2k/2, d0 + k,
2kD0 + 2k+1 − 2, and d(2n0)2k/8e, respectively.

It is desirable for the interconnection network to be
symmetric and to have a low node degree and a low
diameter. In general, the requirements of a low node degree
and a low diameter are conflicting. We introduce cost ratio
CR(G) as an important measure for the combined effects
of the hardware cost and the software efficiency of an
interconnection network presented as graph G. Let |(G)|,
d(G), and D(G) be the number of nodes, the node-degree,
and the diameter of G, respectively. We define CR(G) as

CR(G) = (d(G) +D(G))/ lg |(G)|.

The motivation here is that the node-degree and diameter
should not increase faster than the logarithm of the size of of
the graph. It should be considered as a basic rule for high-
performance MPPs. The design of interconnection network
should make effort to reduce the cost ratio, especially for an
MPP with very large scale. One of the reasons that hyper-
cube has been and will be still popular as an interconnection
network of MPPs is that its node-degree and diameter grow
logarithmically with its size. Therefore, the cost ratio of
hypercube is a constant 2 for any size. However, for an MPP
with more than a million of nodes, the logarithmic growth
rate is still too big for the hardware technologies or software
efficiency.

Table I summarizes the number of nodes, the node-degree,
the diameter, and the cost ratio for 3D torus, hypercube,
CCC, dual-cube, WK-recursive network and recursive dual-
net. The torus, also called wrap-around mesh or a toroidal
mesh, was adopt by IBM Blue Gene/L. This topology
includes the p-ary, q-cube which is a q-dimensional torus
with the restriction that each dimension is of the same size p.
In a CCC(n), each node in an n-cube is replaced with an n-
node ring [7]. A dual-cube DC(n) contains 2n (n−1)-cubes
called clusters [5]. Half of the clusters are of type 0 and the
other half are of type 1. There is a unique link (cross-edge)
connecting each pair of clusters of distinct types. DC(n)
is equal to RDN(2n−1, 1), where the base network is an
(n−1)-cube. A WK-recursive network of level t denoted as
WK (n, t) can be constructed recursively as follows [10].
WK(n, 1) is an n-node complete graph augmented with
n open links each at a node. Each node of WK(n, t) is
incident with n− 1 substituting links and one flipping link
(or open link). The substituting links are those within basic
building blocks, and the j-flipping links are those connecting
two embedded WK(n, j).

The RDN is a potential candidate for the interconnection
network of an MPP. For example, RDN2(B(27)) (where
B(27) is a 3-ary, 3-cube) has 4,251,528 nodes and its
node-degree, diameter, and cost ratio are 8, 18, and 1.18,

Table I
CR OF RECURSIVE DUAL-NET AND THE OTHER NETWORKS

Network Number of nodes Node-degree Diameter CR

p-ary, 3-cube p3 6 3p/2 (6 + 3p/2)/3 lg p
n-cube 2n n n 2
CCC(n) n ∗ 2n 3 2n+ bn/2c − 2 (2n+ bn/2c+ 1)/(n+ lgn)
DC(n) 22n−1 n 2n 3n/(2n− 1)
WK(n, t) nt n 2t − 1 (n+ 2t − 1)/ lgnt

RDNk(B) nk = (2n0)2k/2 d0 + k 2k ∗D0 + 2k+1 − 2 (d0 + k +Dk)/ lgnk

respectively. As far as the CR is concerned, the value 1.18
is the lowest value among all known topologies.

III. DISJOINT-PATH AND FAULT-TOLERANT ROUTING ON
RDN

The problem of finding a path from a source s to
destination t and forwarding a message along the path is
known as the routing problem. Finding multiple, disjoint
paths for routing from s to t is called disjoint-path routing.
Finding a fault-free path from s to t on a network with
a set of faulty nodes is called fault-tolerant routing. The
solutions for these routing problems are fundamental and
critical for the performance of an interconnection network.
In this section, we will propose efficient algorithms for these
routing problems on the recursive dual-net.

Given two nodes u and v in RDNk(B), we first present a
simple routing algorithm that finds a shortest path from u to
v. Assume that a routing algorithm RDN routing (B, u, v)
for the base network B is available. The routing algorithm
that routes node u to node v in RDNk(B) is a recursive one
for k > 0. If u and v are in the same cluster of level k then
just call itself for k− 1. Otherwise, we assume that u and v
has distinct typeID (for the case u0 = v0, we simply route
u to w via a cross-edge of level k then we treat w as u). We
route u to u′ with u′2 = v1 and v to v′ with v′2 = u1 inside
the clusters of level k where u and v belong to. This can be
done by recursive calls for k−1. Then we can route u′ to v′

in 1 hop since there is a cross-edge of level k from u′ to v′.
The routing algorithm is described formally as Algorithm 1.

The following lemma follows directly from Algorithm 1.
Lemma 1: Assume that a path connecting two nodes in

the base-network B can be found in O(f(n0)) time, where
n0 is the number of nodes in B. Then, in RDNk(B), a path
from source s to destination t can be found in O(2kf(n0))
time and the length of the path is at most 2k ∗D0 +2k+1−2,
where D0 is the diameter of the base network.

A. Algorithm for Disjoint-paths Routing on RDN

We introduce the some notation to be used. Let the d+ k
neighbors of node u be u(i), 1 ≤ i ≤ d + k, where
u(i), 1 ≤ i ≤ d, are the nodes belong to RDNk

u (B), and
edge (u, u(i)), d+ 1 ≤ i ≤ d+ k, is the cross-edge of level
i − d. Let u(i,j) = (u(i))(j) for 1 ≤ i, j ≤ d + k, and

Algorithm 1: RDN routing(RDNk(B), u, v)
begin

if k = 0 then RDN routing(B, u, v)
else

Case 1:u0 = v0 and u1 = v1

RDN routing(RDNk−1
u0,u1(B), u2, v2);

/* RDNk−1
u0,u1(B) is the cluster with typeID = u0

and clusterID = u1. */
Case 2: u0 6= v0

RDN routing(RDNk−1
u (B), u2, v1);

/* let u′ = (u0, u1, v1). */
RDN routing(RDNk−1

v (B), v2, u1);
/* let v′ = (v0, v1, u1). */
connect u′ and v′ via a cross-edge of level k;

Case 3: u0 = v0 and u1 6= v1

route u to w via the cross-edge of level k;
route node w to node v as in Case 2;

endif
end

so on. The algorithm for finding d + k disjoint paths from
u to v on RDNk(B) can be divided into three cases. In
Case 1, u and v are in the same cluster of level k. In this
case, d + k − 1 disjoint paths can be found by a recursive
call and a path connecting u(d+k) and v(d+k) outside the
cluster RDNk−1

u (B) can be found. In Case 2, the clusters
containing u and v are of distinct types. In this case, we first
find d + k disjoint paths of length at most 2 from u such
that each path includes a cross-edge of level k.

Similarly, we find d+k disjoint paths of length at most 2
from v such that each path includes a cross-edge of level k.
Then the required d+k disjoint paths can be found by calling
RDN Routing(RDNk(B), ui, vi), 1 ≤ i ≤ d+k. In Case 3,
the clusters contain u or v are distinct but of the same types.
We first route u and v to ui and vi, 1 ≤ i ≤ d+k, as in Case
2. Then ui, 1 ≤ i ≤ d+ k, is routed to wi by disjoint paths
of length at most 2 such that each path includes a cross-edge
of level k and all clusters that contain wi, 1 ≤ i ≤ d+k, are
distinct. Finally, wi and vi can be connected by disjoint paths
by calling RDN Routing(RDNk(B), wi, vi), 1 ≤ i ≤ d+k.
The proposed algorithm is formally presented as Algo. 2.

Example 1 (also see Fig. 5):
k = 2 :
u = (u0, u1, u2) = (0, (0, 0, 0), (0, 0, 0));

Algorithm 2: RDN disjoint paths(RDNk(B), u, v)
Input: Nodes u and v in RDNk(B)
Output: d+ k disjoint paths connecting nodes u and v
begin

Case 1: u0 = v0 and u1 = v1

RDN disjoint paths(RDNk−1
u (B), u2, v2);

find path Pd+k(u) = u→ u(d+k) → u(d+k,j) → u(d+k,j,d+k) = w, where 1 ≤ j ≤ d+ k − 1;
RDN routing(RDNk(B), w, v(d+k)); /* w and v(d+k) are in clusters of distinct types. */

Case 2: u0 6= v0

find d+ k disjoint paths, Pi(u) = u→ u(i) → u(i,d+k) = ui, 1 ≤ i ≤ d+ k − 1, and Pd+k(u) = u→ u(d+k) = ud+k,
of length at most 2;
find d+ k disjoint paths, Pi(v) = v → v(i) → v(i,d+k) = vi, 1 ≤ i ≤ d+ k − 1, and Pd+k(v) = v → v(d+k) = vd+k,
of length at most 2;
if ∃up ∈ RDNk−1

v (B) then RDN routing(RDNk−1
v (B), up, v); /* Assume v(j) ∈ P (up, v). */

remove path Pj(v);
if ∃vq ∈ RDNk−1

u (B) then RDN routing(RDNk−1
u (B), vq, u); /* Assume u(j) ∈ P (vq, u). */

remove path Pj(u);
/* Without loss of generality, assume that ui 6∈ RDNk−1

v (B) and vi 6∈ RDNk−1
u (B) for all i. */

for i = 1 to d+ k do
RDN routing(RDNk−1

ui
(B), ui, si), where si2 = vi1;

RDN routing(RDNk−1
vi

(B), vi, ti); where ti2 = ui1
connect si to ti by a cross-edge of level k;

endfor
Case 3: u0 = v0 and u1 6= v1

find d+ k disjoint paths, Pi(u) = u→ u(i) → u(i,d+k) = ui, 1 ≤ i ≤ d+ k − 1, and Pd+k(u) = u→ u(d+k) = ud+k,
of length at most 2;
find d+ k disjoint paths, Pi(v) = v → v(i) → v(i,d+k) = vi, 1 ≤ i ≤ d+ k − 1, and Pd+k(v) = v → v(d+k) = vd+k,
of length at most 2;
/* If RDNk−1

ui
(B) = RDNk−1

vj
(B) for some ui and vj then ui and vj can be connected inside the cluster of

level k. For simplicity, we assume that RDNk−1
ui

(B) 6= RDNk−1
vj

(B) for all i and j. */
find d+ k disjoint paths Pi(ui) = ui → (ui)(ji) → (ui)(ji,d+k) = wi, 1 ≤ ji ≤ k − 1, of length 2 such that
RDNk−1

wi
(B) are distinct for all i, 1 ≤ i ≤ d+ k;

for i = 1 to d+ k do
RDN routing(RDNk−1

wi
(B), wi, si), where si2 = vi1;

RDN routing(RDNk−1
vi

(B), vi, ti); where ti2 = wi1;
connect si and ti by a cross-edge of level k

endfor
end

v = (v0, v1, v2) = (1, (1, 2, 2), (0, 2, 2));
u0 = 0, u1 = (0, 0, 0), u2 = (0, 0, 0);
v0 = 1, v1 = (1, 2, 2), v2 = (0, 2, 2).
u0 6= v0 (Case 2):

The four disjoint paths from u of length at most 2 are
u→(0, (0, 0, 0), (0, 0, 1))→(1, (0, 0, 1), (0, 0, 0))=u1

u→(0, (0, 0, 0), (0, 0, 2))→(1, (0, 0, 2), (0, 0, 0))=u2

u→(0, (0, 0, 0), (1, 0, 0))→(1, (1, 0, 0), (0, 0, 0))=u3

u→(1, (0, 0, 0), (0, 0, 0))=u4

The four disjoint paths from v of length at most 2 are
v→(1, (1, 2, 2), (0, 2, 0))→(0, (0, 2, 0), (1, 2, 2))=v1

v→(1, (1, 2, 2), (0, 2, 1))→(0, (0, 2, 1), (1, 2, 2))=v2

v→(1, (1, 2, 2), (1, 2, 2))→(0, (1, 2, 2), (1, 2, 2))=v3

v→(0, (0, 2, 2), (1, 2, 2))=v4

Then, ui is routed to si in the clusters of level 2, where
s1 = (1, (0, 0, 1), (0, 2, 0)),
s2 = (1, (0, 0, 2), (0, 2, 1)),

s3 = (1, (1, 0, 0), (1, 2, 2)), and
s4 = (1, (0, 0, 0), (0, 2, 2)).

Next, vi is routed to ti in the clusters of level 2, where

t1 = (0, (0, 2, 0), (0, 0, 1)),
t2 = (0, (0, 2, 1), (0, 0, 2)),
t3 = (0, (1, 2, 2), (1, 0, 0)), and
t4 = (0, (0, 2, 2), (0, 0, 0)).

Finally, si is connected to ti via a cross-edge of level k.
Theorem 2: In RDNk(B), assume that, for any two

nodes in the base-network B(n0, d0 disjoint path can
be found in O(f(n0)) time. Then d0 + k disjoint paths
connecting any two nodes in RDNk(B), k > 0, can be
found in O(2k(d0 + k)f(n0)) time. The maximum length
of the paths is at most 2k ∗D0 + 2k+1− 2, where D0 is the
diameter of the base network.
Proof: The theorem follows directly from algorithm 2. Let
the time complexity for finding d0 + k disjoint paths in
RDNk(B) be T (k). From Algorithm 2 and Lemma 1,

u = (0, (0, 0, 0), (0, 0, 0))

u3 = (1, (1, 0, 0), (0, 0, 0))u4 = (1, (0, 0, 0), (0, 0, 0)) u1 = (1, (0, 0, 1), (0, 0, 0)) u2 = (1, (0, 0, 2), (0, 0, 0))

v = (1, (1, 2, 2), (0, 2, 2))

v1 = (0, (0, 2, 0), (1, 2, 2)) v2 = (0, (0, 2, 1), (1, 2, 2)) v3 = (0, (1, 2, 2), (1, 2, 2))v4 = (0, (0, 2, 2), (1, 2, 2))

t1 = (0, (0, 2, 0), (0, 0, 1)) t2 = (0, (0, 2, 1), (0, 0, 2)) t3 = (0, (1, 2, 2), (1, 0, 0))t4 = (0, (0, 2, 2), (0, 0, 0))

s1 = (1, (0, 0, 1), (0, 2, 0))s4 = (1, (0, 0, 0), (0, 2, 2)) s3 = (1, (1, 0, 0), (1, 2, 2))s2 = (1, (0, 0, 2), (0, 2, 1))

Figure 5. Disjoint-paths routing in RDN2(B(3))

we have T (k) = O(d0 + k) × 2kf(n0)) + O(d0 + k) =
O(2k(d0 + k)f(n0)). The worst-case for the length of the
longest path occurs in Case 3 of the algorithm. The length
of the longest path equals to 4 + 2 ∗Dk−1 + 2 for k > 0.
Therefore, the maximum length is 2k ∗D0 +2k+1−2, where
D0 is the diameter for the base network. o

B. Algorithm for Fault-tolerant Routing on RDN

Given two non-faulty nodes and a set F of d0+k−1 faulty
nodes in an RDNk(B), we propose an efficient algorithm
for finding a fault-free path connecting u and v. Assume
that the clusters that contain faulty nodes can be identified
in O(d0 + k) time. Then, our algorithm can find a fault-
free path between u and v in O(d0 + k) optimal time. The
proposed algorithm for fault-tolerant routing is similar to
that for disjoint-paths routing.

First assume that u and v are in the same cluster
(Case 1). If |RDNk−1

u (B) ∩ F | < d0 + k then just
call RDN Routing(RDNk−1

u (B), u, v) and we are done.
If |RDNk−1

u (B) ∩ F | = d0 + k then we find a fault-
free path P (u, u′) : u → u(d0+k) → u(d0+k,i) →
u(d+k,i,d9+k) = w of length 3, where i < d0 + k. Then,
we call RDN Routing(RDNk(B), w, v) and we are done.

Next, we assume that types of the clusters containing
u and v are distinct (Case 2). If |RDN k − 1u(B) ∩

F | = |RDNk−1
v (B) ∩ F | = 0 then just call

RDN Routing(RDNk(B), u, v) and we are done. Other-
wise, among the d0 + k disjoint paths of length at most 2
that route u to other clusters of level k, we find a fault-free
path P (u, u′) such that |RDNk−1

u′ (B) ∩ F | = 0. Similarly,
among the d0 + k disjoint paths of length at most 2 that
route v to other clusters of level k, we find a fault-free
path P (v, v′) such that |RDNk−1

v′ (B)∩ F | = 0. By calling
RDN Routing(RDNk(B), u′, v′) we are done.

Finally, we consider the case that the clusters containing
u and v are distinct but of the same type (Case 3). If
at least one of the two clusters is fault-free, say it is the
cluster contains v, then we route u to u′ by a fault-free
path of length at most 2 such that |RDNk−1

u′ (B) ∩ F | = 0.
By calling RDN Routing(RDNk(B), u′, v) we are done.
Otherwise, we route u to w by a fault-free path of length at
most 2 such that |RDNk−1

w (B)∩F | = 0 and then since the
clusters containing w and v are of distinct types, following
the Case 2, we can route w to v by a fault-free path. The
proposed algorithm is formally presented as Algorithm 3.
Example 2:
k = 2 :
u = (u0, u1, u2) = (0, (0, 0, 0), (0, 0, 0));
v = (v0, v1, v2) = (1, (1, 2, 2), (0, 2, 2));
f1 = (0, (0, 0, 0), (0, 0, 1);

Algorithm 3: RDN ft routing(RDNk(B), u, v, F)
Input: A set of faulty nodes F with |F | < d0 + k and non-faulty nodes u and v in RDNk(B)
Output: A fault-free path connecting nodes u and v
begin

Case 1: u0 = v0 and u1 = v1

if |RDNk−1
u (B) ∩ F | < d+ k − 1

then RDN ft routing(RDNk−1
u (B), u2, v2)

else find path u→ u(d0+k) → u(d0+k,j) → u(d0+k,j,d0+k) = w, where j 6= d0 + k;
RDN routing(RDNk(B), w, v(d0+k));

Case 2: u0 6= v0

if |RDNk−1
u (B) ∩ F | = |RDNk−1

v (B) ∩ F | = 0
then RDN routing(RDNk(B), u, v)
else find a fault-free path Pp(u) among the d0 + k disjoint paths Pi(u) = u→ u(i) → u(i,d0+k) = ui, 1 ≤ i ≤ d0 + k − 1,

or Pd0+k(u) = u→ u(d0+k) = ud0+k, of length at most 2 such that |RDNk−1
up (B) ∩ F | = 0;

/* Since |F | < d0 + k, Pp(u) does exist. If multiple Pp(u) exist, we choose arbitrarily one of them. */
if up ∈ RDNk−1

v (B) then
if |RDNk−1

v (B) ∩ F | < d0 + k − 1
then RDN ft routing(RDNk−1

v (B), up2, v2); exit
else /*|RDNk−1

v (B) ∩ F | = d0 + k − 1. */
find path v → v(d+k) → v(d0+k,j) → v(d0+k,j,d0+k) = w, where j 6= d0 + k;
RDN routing(RDNk(B), w, v); exit;

find a fault-free path Pq(v) among the d0 + k disjoint paths Pi(v) = v → v(i) → v(i,d0+k) = vi, 1 ≤ i ≤ d0 + k − 1,
or Pd0+k(v) = v → v(d0+k) = vd0+k, of length at most 2 such that |RDNk−1

vq (B) ∩ F | = 0;
if vq ∈ RDNk−1

u (B) then
if |RDNk−1

u (B) ∩ F | < d0 + k − 1
then RDN ft routing(RDNk−1

u (B), vq2 , u2); exit
else /*|RDNk−1

u (B) ∩ F | = d0 + k − 1. */
find path u→ u(d0+k) → u(d0+k,j) → u(d0+k,j,d0+k) = w, where j 6= d0 + k;
RDN routing(RDNk(B), w, u); exit;

RDN routing(RDNk(B), up, vq);
Case 3: u0 = v0

if |RDNk−1
u (B) ∩ F | = 0 or |RDNk−1

v (B) ∩ F | = 0
/* Without loss of generality, we assume |RDNk−1

v (B) ∩ F | = 0. */
then find a fault-free path Pp(u) among the d0 + k disjoint paths Pi(u) = u→ u(i) → u(i,d0+k) = ui, 1 ≤ i ≤ d0 + k − 1,

or Pd0+k(u) = u→ u(d0+k) = ud0+k, of length at most 2 such that |RDNk−1
up (B) ∩ F | = 0;

RDN routing(RDNk(B), up, v)
else find a fault-free path Pp(u) among the d0 + k disjoint paths Pi(u) = u→ u(i) → u(i,d0+k) = ui, 1 ≤ i ≤ d0 + k − 1,

or Pd0+k(u) = u→ u(d0+k) = ud0+k, of length at most 2 such that |RDNk−1
up (B) ∩ F | = 0;

find a fault-free path Pq(v) among the d0 + k disjoint paths Pi(v) = v → v(i) → v(i,d0+k) = vi, 1 ≤ i ≤ d0 + k − 1,
or Pd0+k(v) = v → v(d0+k) = vd0+k, of length at most 2 such that |RDNk−1

vq (B) ∩ F | = 0;
if RDNk−1

up (B) = RDNk−1
vq (B)

then RDN routing(RDNk−1
up (B), up, vq)

else find a fault-free path Pr(up) among the d0 + k disjoint paths Pi(up) = up → (up)(i) → (up)(i,d0+k) = (up)i,
1 ≤ i ≤ d0 + k − 1, or Pd+k(up) = up → (up)(d0+k) = (up)d0+k, of length at most 2 such that
|RDNk−1

(up)r (B) ∩ F | = 0;
RDN routing(RDNk(B), (up)r, vq);

end

f2 = (1, (0, 0, 0), (0, 0, 0);
f3 = (1, (1, 0, 0), (1, 2, 0).
u0 6= v0 (Case 2):
Among the four disjoint paths of length at most 2

from u, only the path u → (0, (0, 0, 0), (0, 0, 2)) →
(1, (0, 0, 2), (0, 0, 0) = u2 is fault-free and |RDNu2(3, 1) ∩
F | = 0. Notice that since |RDN1

u3(B(3)) ∩ F | = 0,
u3 = (1, (1, 0, 0), (0, 0, 0) cannot be chosen. Therefore,
we have p = 2 and up = (1, (1, 0, 0), (0, 0, 0)). For the
fault-free path of length at most 2 from v, we choose

vq = (0, (0, 2, 2), (1, 2, 2) though any of the four paths is
okey. Then, by calling RDN routing(RDN2(B(3)), up.vq),
we find a fault-free path from u to v as shown in Fig. 6.

Theorem 3: Assume that, for any two nodes in the base-
network B(n0), a path connecting the two nodes can be
found in O(f(n0)) time. Then for any two non-faulty nodes
in RDNk(B), k > 0, with at most d0 + k− 1 faulty nodes,
a fault-free path connecting the two nodes can be found in
O(d0+k+2kf(n0)) time. The maximum length of the paths
is at most 2k ∗D0 + 2k+1− 2, where D0 is the diameter of

u = (0, (0, 0, 0), (0, 0, 0))

u3 = (1, (1, 0, 0), (0, 0, 0))u4 = (1, (0, 0, 0), (0, 0, 0)) u1 = (1, (0, 0, 1), (0, 0, 0)) u2 = (1, (0, 0, 2), (0, 0, 0))

v = (1, (1, 2, 2), (0, 2, 2))

v1 = (0, (0, 2, 0), (1, 2, 2)) v2 = (0, (0, 2, 1), (1, 2, 2)) v3 = (0, (1, 2, 2), (1, 2, 2))v4 = (0, (0, 2, 2), (1, 2, 2))

t1 = (0, (0, 2, 0), (0, 0, 1)) t2 = (0, (0, 2, 1), (0, 0, 2)) t3 = (0, (1, 2, 2), (1, 0, 0))t4 = (0, (0, 2, 2), (0, 0, 2))

s1 = (1, (0, 0, 1), (0, 2, 0))s4 = (1, (0, 0, 0), (0, 2, 2)) s3 = (1, (1, 0, 0), (1, 2, 2))s2 = (1, (0, 0, 2), (0, 2, 2))

Figure 6. Fault-tolerant routing in RDN2(B(3))

the base network.
Proof: The theorem follows directly from algorithm 3.
Let the time complexity for finding a fault-free path in
RDNk(B) be T (k). From Algorithm 3 and Lemma 1, we
have T (k) = O(d0 + k) + O(2kf(n0)) = O(d0 + k +
2kf(n0)). The worst-case for the length of the longest path
occurs in Case 3 of the algorithm. The length of the longest
path equals to 4 + 2 ∗Dk−1 + 2 for k > 0. Therefore, the
maximum length is 2k ∗ D0 + 2k+1 − 2, where D0 is the
diameter for the base network. o

IV. ALGORITHM FOR FAULT-TOLERANT ROUTING ON
RDN WITH ARBITRARY NUMBER OF FAULTY NODES

In this section, we propose an efficient practical algorithm
for fault-tolerant routing in a RDN with arbitrary number
of faulty nodes. Given a set of faulty nodes F and two
nonfaulty nodes u and v in RDNk(B), k > 0. If u and
v are in the same cluster of level k then it is done by a
recursive call on the cluster where u and v reside. In case
of u0 6= v0 (Case 2), if the gateways s = (u0, u1, v1) and
t = (v0, v1, u1) are nonfaulty then it is done by two recursive
calls on the clusters where u and v reside. Otherwise, find
fault-free paths of length at most 2 from u and v to up and
vq and then recursive call with u and v replaced by up and
vq , respectively. In case of u0 = v0 and u1 6= v1, we route
u or v to the cluster of distinct type by a fault-free path of
length at most 2 and then treat it as Case 2. The algorithm
will fail to find a fault-free path if we cannot find a fault-free
path of length at most 2 to route u or v to a node in other

cluster of distinct type. The proposed algorithm is formally
presented as Algorithm 4.

0
10
20
30
40
50
60
70
80
90

100

0 30 60 90 120 150

Su
cc

es
sf

ul
ro

ut
in

g
ra

tio
(%

)

Number of faulty nodes

RDN2(B(3))

Figure 7. Successful routing rate of fault-tolerant routing inRDN2(B(3))

We have simulated the performance of the proposed
algorithm on an RDN2(B(3)). The simulation result is
shown in Fig. 7. In RDN2(B(3)), there are 648 nodes in
total. The number of faulty nodes is assigned from 0 to
150, stepped by 1. The faulty nodes are randomly distributed
and 100 routings are simulated for a fixed number of faulty
nodes. We calculate the successful routing rate by dividing
the number of successful routings by 100.

Algorithm 4: RDN unlimited ftr(RDNk(B), u, v, F)
Input: A set of faulty nodes F and non-faulty nodes u and v in RDNk(B)
Output: A fault-free path connecting nodes u and v
begin /* Assume that RDN unlimited ftr(B, u, v) is available. */

Case 1: u0 = v0 and u1 = v1

RDN unlimited ftr(RDNk−1
u (B), u2, v2, F ∩RDNk−1

u (B));
Case 2: u0 6= v0

if s = (u0, u1, v1) and t = (v0, v1, u1) are nonfaulty
then RDN unlimited ftr(RDNk−1

u (B), u2, v1);
RDN unlimited ftr(RDNk−1

v (B), v2, u1)
else find a fault-free path Pp(u) among the d0 + k disjoint paths Pi(u) = u→ u(i) → u(i,d0+k) = ui, 1 ≤ i ≤ d0 + k − 1,

or Pd0+k(u) = u→ u(d0+k) = ud0+k, of length at most 2 such that |RDNk−1
up (B) ∩ F | is a minimum;

find a fault-free path Pq(v) among the d+ k disjoint paths Pi(v) = v → v(i) → v(i,d0+k) = vi, 1 ≤ i ≤ d0 + k − 1,
or Pd0+k(v) = v → v(d0+k) = vd0+k, of length at most 2 such that |RDNk−1

vq (B) ∩ F | is a minimum;
RDN unlimited ftr(RDNk(B), up, vq);

Case 3: u0 = v0 and u1 6= v1
if |RDNk−1

u (B) ∩ F | < |RDNk−1
v (B) ∩ F |

then find a fault-free path Pp(u) among the d0 + k disjoint paths Pi(u) = u→ u(i) → u(i,d0+k) = ui, 1 ≤ i ≤ d0 + k − 1,
or Pd+k(u) = u→ u(d0+k) = ud0+k, of length at most 2 such that |RDNk−1

up (B) ∩ F | is a minimum;
RDN unlimited ftr(RDNk(B), up, v)

else find a fault-free path Pq(v) among the d0 + k disjoint paths Pi(v) = v → v(i) → v(i,d0+k) = vi, 1 ≤ i ≤ d0 + k − 1,
or Pd0+k(v) = v → v(d0+k) = vd0+k, of length at most 2 such that |RDNk−1

vq (B) ∩ F | is a minimum;
RDN unlimited ftr(RDNk(B), u, vq);

end

The simulation result is shown in Fig. 7. From the figure,
we can see that the algorithm achieves high probability of
the successful routings with a rather large number of faulty
node. When the number of faulty nodes is less than 70, the
probabilities of the successful routings are almost 100%.
When the number of faulty nodes increases up to 150 that
is about 1/4 of the total number of nodes, the probabilities
of the successful routings are still larger than 97%.

V. CONCLUDING REMARKS

Recursive dual-net is a new interconnection network for
MPP. It has great potential as a candidate for the network
of the parallel computers of next generations. In this paper,
we proposed efficient algorithms for disjoint-paths routing
and fault-tolerant routing on the recursive dual-net. There
are many issues concerning the recursive dual-net that are
worth further research.

REFERENCES

[1] S. G. Aki, Parallel Computation: Models and Methods.
Prentice-Hall, 1997.

[2] F. T. Leighton, Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes. Morgan Kaufmann,
1992.

[3] A. Varma and C. S. Raghavendra, Interconnection Networks
for Multiprocessors and Multicomputers: Theory and Prac-
tice. IEEE Computer Society Press, 1994.

[4] K. Ghose and K. R. Desai, “Hierarchical cubic networks,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 6, no. 4, pp. 427–435, April 1995.

[5] Y. Li and S. Peng, “Dual-cubes: a new interconnection
network for high-performance computer clusters,” in Proceed-
ings of the 2000 International Computer Symposium, Work-
shop on Computer Architecture, ChiaYi, Taiwan, December
2000, pp. 51–57.

[6] Y. Li, S. Peng, and W. Chu, “Efficient collective communica-
tions in dual-cube,” The Journal of Supercomputing, vol. 28,
no. 1, pp. 71–90, April 2004.

[7] F. P. Preparata and J. Vuillemin, “The cube-connected cycles:
a versatile network for parallel computation,” Commun. ACM,
vol. 24, pp. 300–309, May 1981.

[8] Y. Saad and M. H. Schultz, “Topological properties of hyper-
cubes,” IEEE Transactions on Computers, vol. 37, no. 7, pp.
867–872, July 1988.

[9] G. H. Chen and D. R. Duh, “Topological properties, commu-
nication, and computation on wk-recursive networks,” Net-
works, vol. 24, no. 6, pp. 303–317, 1994.

[10] G. Vicchia and C. Sanges, “A recursively scalable network
vlsi implementation,” Future Generation Computer Systems,
vol. 4, no. 3, pp. 235–243, 1988.

[11] TOP500, Supercomputer Sites. http://top500.org/, Jun. 2009.
[12] Y. Li, S. Peng, and W. Chu, “Recursive dual-net: A new

universal network for supercomputers of the next genera-
tion,” in Proceedings of the 9th International Conference
on Algorithms and Architectures for Parallel Processing
(ICA3PP’09). Taipei, Taiwan: Springer, Lecture Notes in
Computer Science (LNCS), to be published, June 2009.

[13] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus,
A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh,
B. D. Steinmacher-Burow, T. Takken, M. Tsao,
and P. Vranas, “Blue gene/l torus interconnection
network,” IBM Journal of Research and Development,
http://www.research.ibm.com/journal/rd/492/tocpdf.html,
vol. 49, no. 2/3, pp. 265–276, 2005.

