
Proceedings of of the 5th Intl. Conf. on PDCAT, Dec. 8-10, 2004 Singapore. pp.196-201

An Efficient Algorithm for Fault Tolerant
Routing Based on Adaptive Binomial-Tree

Technique in Hypercubes

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science, Hosei University, Tokyo 184-8584 Japan
2 Department of Computer Hardware, University of Aizu, Fukushima 965-8580 Japan

Abstract. We propose an efficient fault-tolerant routing algorithm for
hypercube networks with a very large number of faulty nodes. The algo-
rithm is distributed and local-information-based in the sense that each
node in the network knows only its neighbors’ status and no global in-
formation of the network is required by the algorithm. For any two given
nonfaulty nodes in a hypercube network that may contain a large frac-
tion of faulty nodes, the algorithm can find a fault-free path of nearly
optimal length with very high probability. The algorithm uses the adap-
tive binomial-tree to select a suitable dimension to route a node. We
perform empirical analysis of our algorithm through simulations under a
uniform node failure distribution and a clustered node failure distribu-
tion. The experimental results show that the algorithm successfully finds
a fault-free path of nearly optimal length with the probability larger than
90 percent in a hypercube network that may contain up to 50 percent
faulty nodes.

1 Introduction

Hypercube networks are among the most popular network models studied by
researchers and adopted in many implementations of parallel computer systems,
such as Intel iPSC, the nCUBE, the Connection Machine CM-2, and the SGI’s
Origin 2000 [1] and Origin 3000.

Much effort has been devoted to introduce realistic definitions to measure
the networks’ ability to tolerate faults, and to develop routing algorithms under
a large number of faults. For example, Najjar et al [2] demonstrated that for the
10-cube, 33 percent of nodes can fail and the network can still remain connected
with a probability of 99 percent. Gu and Peng [3] proposed an efficient global
routing algorithm for a k-safe n-cube with up to 2k(n−k)−1 faulty nodes. Chen
et al [4] also proposed a distributed routing algorithm for hypercube with up to
37.5% faulty nodes based on local subcube-connectivity.

197

In this paper, based on the divide-and-conquer and adaptive binomial-tree
techniques, we propose an efficient fault-tolerant routing algorithm. For hyper-
cube network that may contain a large fraction of faulty nodes, our algorithm
finds a fault-free path for any two given nonfaulty nodes with very high proba-
bility. The algorithm uses the adaptive binomial-tree to select a suitable dimen-
sion to route a node. We perform empirical analysis of our algorithm through
simulations under a variety of probability distributions of node failures. The ex-
perimental results show that the algorithm successfully finds a fault-free path of
nearly optimal length with the probability larger than 90 percent in a hypercube
network that may contain up to 50 percent faulty nodes.

2 Fault-tolerant Routing Algorithm

For node s ∈ Hn, let s(i) be the neighbor of s in i-dimension. Similarly, s(i,j)

denotes (s(i))(j). A fault-free k-binomial-tree rooted at a given node s is denoted
as Tk(s).

Algorithm Hypercube Routing(n, s, t,max)
Input: n-cube, nonfaulty nodes s = s1s2. . .sn and t = t1t2. . .tn,

max: the maximum size of binomial-tree.
Output: a fault-free path P = (s→ t) or report failure
begin

P = ∅; D = {1, . . . , n}; w = s;
for i = 1 to n do

if (there is a dimension j ∈ D such that wj 6= tj)
D = D − {j};
if (w′ = w1. . .wj−1wjwj+1. . .wn is nonfaulty) P = P : w; w = w′;
else routed = false; k = 0;

while (routed = false) AND (k < max) do
(w′, T , fail) = Binomial Tree(n,w, t, j, k,D);
if (w′ 6= −1) P = P : T ; w = w′; routed = true;
else if (fail = true) return failure;

else k = k + 1;
return P ; /* finish, path constructed */

end

We first partition Hn along with a dimension j into two (n− 1)-cubes, H0
n−1

and H1
n−1, such that s and t are separated. Assume s ∈ H0

n−1 and t ∈ H1
n−1.

Then, we route s to a node s′ ∈ H1
n−1.

Intuitively, the routing algorithm can be described below. In the first run, if
s(j) is nonfaulty then we are done, where j is the dimension on which we are
routing; otherwise, we build a k = 0 binomial-tree T0(s) = {s} and try to find a
fault-free path s→ s′ of length 2, (s : s(i) : s(i,j)), where s(i) ∈ H0

n−1 and i 6= j.
If we fail to find a fault-free path in the first run then let k = k + 1 and try

to build a fault-free k-binomial-tree Tk(s). If there exists a node u ∈ Tk(s) such
that u(j) is nonfaulty then we are done. Otherwise, for each node u ∈ Tk(s), we

198

Procedure Binomial Tree(n,w, t, j, k,D)
begin

w′ = −1; T = ∅; fail = false;
if (k = 0)

B = {w};
reorder(w, t,D);
if (there is an i ∈ D: u = w1. . .wi−1wiwi+1. . .wn is nonfaulty)

if (v = u1. . .uj−1ujuj+1. . .un is nonfaulty)
T = u; w′ = v;
return (w′, T , fail);

return (w′, T , fail);
N = ∅;
for (each node s ∈ B) do /* 1. construct k-binomial-tree */

reorder(s, t,D);
if (there is an i ∈ D: u = s1. . .si−1sisi+1. . .sn /∈ (B ∪N) is nonfaulty)

if (v = u1. . .uj−1ujuj+1. . .un is nonfaulty)
T = w → u; w′ = v;
return (w′, T , fail);

N = N ∪ u;
else fail = true;

for (each node s ∈ N) do /* 2. search k-binomial-tree */
reorder(s, t,D);
if (there is an i ∈ D: u = s1. . .si−1sisi+1. . .sn is nonfaulty)

if (v = u1. . .uj−1ujuj+1. . .un is nonfaulty)
T = w → u; w′ = v;
return (w′, T , fail);

B = B ∪N ; /* constructing (k + 1)-binomial-tree */
return (w′, T , fail); /* w′ = −1;T = ∅; fail = true or false */

end

try to find a node u(i), i 6= j, such that u(i) and u(i,j) are nonfaulty. If such u
exists then we are done and s′ = u(i,j). The algorithm terminates if the fault-free
path s→ s′ is found or the algorithm fails to build Tk(s).

To extend Tk−1(s) to Tk(s), we use a dimension set D to keep the dimensions
that are not yet routed. Initially, D(u) = {1, . . . , n}. Once a dimension j is
routed, j is deleted from D. When we check the neighbors of a node in the
binomial-tree to find a nonfaulty node to extend the binomial-tree, we want
those nodes whose jth bit have the same value as the destination node t to be
searched first. Therefore, we re-order D before it is used for selecting neighbors
or finding new nodes. We call this adaptive binomial-tree routing.

The construction of Tk(s) is as follows: We apply a tree traversal on Tk−1(s).
While u ∈ Tk−1(s) is visited, we try to find a nonfaulty node v ∈ {u(i)|i ∈ D(u)}.
If such v exists then we include edge (u : v) and node v in Tk(s). Otherwise, the
extension fails and the algorithm terminates unsuccessfully.

The running time of the routing algorithm is analyzed as follows: For every
k, each iteration for finding s→ s′ takes O(|Tk(s)| × n) time. In the worst case,
the time for finding a fault-free path s → s′ or reporting a failure will take

199

∑max
k=0 O(|Tk(s)| × n) = O(n), where max is the largest k we try for finding

s → s′. In all practical cases as we will show in the next section, we have
max ≤ 4. Then, the running time of the algorithm that performs binomial-tree
routing O(n) is O(n2), independent of the size of F .

3 Theoretical Analysis and Simulations

In this section, we first give a theoretical analysis on the successful routing rate of
our algorithm under the uniform distribution of node failures. Then we show the
simulation results of our algorithm under the uniform and clustered distributions
of node failures.

The causes for the failure of the binomial-tree routing are twofolds: failure in
finding a nonfaulty k-binomial-tree or failure in finding a fault-free path (s→ s′)
using the found binomial-tree. For simplicity, we assume that k is fixed. Let pf
be the node failure probability. We calculate the successful routing rate ps for
the given values of n, pf , and k. The formula for the approximate ps is given in
the following theorem.

Theorem 1 Suppose that every node in the n-cube has an equal and independent
failure probability pf . For a given k, the probability of successful routing of the
algorithm ps ≈

∏n/2
i=1(1−pf (1−(1−pf)2)n−i) if k = 0; otherwise, ps ≈

∏n/2
i=1(1−

p2k

f (1− (1− pf)2)2k(n−i−k))(1− pn−i+1
f)2k−1

.

We have performed extensive experiments to study the performance of our
routing algorithm based on the uniform distribution and the clustered distribu-
tion of node failures. We have done simulation for the n-cube with n = 10, 15, 16
and 20. For each n, we simulated the node failure probability pf = 10% ∼ 70%
with 10% increment. For each pair (n, pf), we randomly picked up 10,000 pairs
of nonfaulty nodes in Hn, and simulated our routing algorithm.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

R
a
te

o
f

su
c
c
e
ss

fu
l

ro
u
ti

n
g
p
s

(%
)

Probability of node failures pf (%)

n = 20
n = 15
n = 10

Fig. 1. Successful routing rate

0

100

200

300

400

0 10 20 30 40 50 60 70

Im
p
ro

v
e
m

e
n
t

(%
)

Probability of node failures pf (%)

k = 3
k = 2
k = 1
k = 0

Fig. 2. Ratio of ps for max = 1, 2, and 3
over max = 0 when n = 16

200

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

E
x
tr

a
p
a
th
e

(%
)

Probability of node failures pf (%)

n = 10
n = 15
n = 20

Fig. 3. Ratio of the max. length to d(s, t)

100

110

120

130

140

150

160

0 10 20 30 40 50 60 70

S
p

e
e
d
u
p

(%
)

Probability of node failures pf (%)

n = 20
n = 15
n = 10

Fig. 4. Speedup of adaptive routing

From Figure 1, we can see that, when the node failure probability is not very
large (i.e., pf ≤ 20%), the successful routing rate ps is nearly 100% (≈ 99.9%).
When the pf is 30% or more, the ps starts to drop slowly, and when the pf is
60% or more, the ps drops faster. However, the ps still maintains at about 50%
for n = 10, and 70% for n = 20. For n = 10 and pf = 30%, Chen’s algorithm
finds a fault-free path at the probability of 92% [4]. In contrast, our algorithm
finds a fault-free path at the probability of 99.28% with k = 2, much higher than
Chen’s algorithm.

Figure 2 indicates the improvement on ps over the increment on max (the
upper bound of the binomial-tree to be checked) for n = 16. We let the values of
max vary from 0 to 3. From the resulting data, we see the improvement is sig-
nificant for max as pf increases. For example, when pf = 70, the ps of max = 3
is 5 times of that of max = 0. However, for max > 3, the improvement on per-
formance is very little and can be ignored. We conclude that setting max = 2 or
max = 3 should be enough for all practical cases. Therefore, the running time of
the algorithm is efficient since the constant is small. Figure 3 shows the average
ratio (path plus) of the lengths of the paths generated by the algorithm over
the distance d(s, t) for n = 16. The path plus is nearly optimal. In all cases, the
maximum length of the paths generated is bounded by 1.5 × d(s, t). Figure 4
shows the performance improvement of the adaptive binomial-tree routing com-
pared to the basic binomial-tree routing that does not reorder the dimensions of
D. It can be seen that the speedup increases as the size of hypercube and the
pf increase.

We have also simulated on another probability distribution of node failures.
The results show that the performance under the clustered distribution are sim-
ilar to that under the uniform distribution. For pf > 20%, the clustered node
failure distributions get a little bit better performance than the uniform distri-
bution.

References

1. SGI: Origin2000 Rackmount Owner’s Guide, http://techpubs.sgi.com/ (1997)

201

2. Najjar, W., Gaudiot, J.L.: Network resilience: A measure of network fault tolerance.
IEEE Transactions on Computers 39 (1990) 174–181

3. Gu, Q.P., Peng, S.: Unicast in hypercubes with large number of faulty nodes. IEEE
Transactions on Parallel and Distributed Systems 10 (1999) 964–975

4. Chen, J., Wang, G., Chen, S.: Locally subcube-connected hypercube networks:
Theoretical analysis and experimental results. IEEE Transactions on Computers
51 (2002) 530–540

