
The Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies, Aug. 27-29, 2003 Chengdu, China. pp.180–187

An Instruction Cache Architecture for Parallel Execution of Java Threads

Wanming Chu
Department of Computer Hardware, University of Aizu

Aizu-Wakamatsu, 965-8580 Japan

Yamin Li
Department of Computer Science, Hosei University

Tokyo, 184-8584 Japan

Abstract

Designing a Java processor supporting horizontal mul-
tithreading has been becoming more attractive as network
computing gains importance. Different from the traditional
superscalar processors that issue multiple instructions from
a single instruction stream to exploit the instruction level
parallelism (ILP), the horizontal multithreading Java pro-
cessors issue multiple instructions (bytecodes) from multi-
ple threads in parallel to exploit not only the ILP but the
thread level parallelism (TLP). Such processors have mul-
tiple dispatch slots and require the instruction fetch unit to
supply instructions with much higher bandwidth than super-
scalar processors. Using a traditional superscalar cache
architecture in a horizontal multithreading Java processor
results in high cache miss ratio caused by the interference
among the threads. This paper investigates a multibank in-
struction cache architecture for horizontal multithreading
Java processor to meet the requirements of the high instruc-
tion fetch bandwidth. In order to evaluate the cache perfor-
mance as well as the horizontal multithreading Java pro-
cessor performance, we developed a trace driven simulator.
The simulator consists of a trace generator which gener-
ates the Java bytecode execution traces and an architectural
simulator which reads the traces and evaluates the perfor-
mance of the instruction cache and the overall performance
of the Java processor. Our simulation results show that the
performance improvements are obtained by the low cache
miss ratio and the high instruction fetch bandwidth of the
proposed cache architecture. The IPC (instructions per cy-
cle) performance is about 19 when the numbers of slots and
banks both are 8, about 5 times better than one bank cache.

keywords: Cache, Java virtual machine, Java processor, in-
struction level parallelism, thread level parallelism, multi-
threading, performance evaluation, trace-driven simulation

1. Introduction

The superscalar processors try to exploit instruction level
parallelism (ILP) by issuing multiple instructions in every
clock cycle. However, the performance improvements ob-
tained by exploitation of ILP from a single thread eventu-
ally reached their upper bound due to the data and con-
trol dependences. Data dependences between instructions
cause the parallel execution of multiple instructions impos-
sible; while control dependences break down the execution
pipelines. Previous research results showed that the branch
instructions occupy more than 15% of the executed total in-
structions in general, this means that, on average, the size of
a basic block1 is six to seven instructions in length. Many
computer researchers have been concentriting on the fetch-
ing and scheduling instructions across the basic block.

The multithreading is a technique to tolerant the la-
tency caused by time-consuming memory access. When a
thread has to access memory due to a cache miss, processor
switches to another thread to execute during the memory
access of the original thread. Such context switching mech-
anism is referred to ascoarse-grain multithreading. An-
other type of multithreading, calledfine-grain multithread-
ing, schedules instructions from different threads on every
clock cycle. Fine-grain multithreading can also reduce the
penalty of the data and control dependences. We call both
the multithreadingsvertical multithreadingbecause, at a
given clock cycle, only one thread’s instructions are fetched.

Vertical multithreading tolerates memory access latency.
On the other hand,horizontal multithreadingtries to exploit
thread level parallelism (TLP). The horizontal multithread-
ing tries to fetch, issue and execute multiple instructions
from multiple threads in parallel in every clock cycle. In
[8], Tullsen et al proposed a RISC superscalar-based simul-
taneous multithreading (SMT) architecture. An SMT pro-

1A code sequence in which there is no branch instructions except the
last instruction

180



cessor issues instructions of multiple threads from an in-
struction queue to functional units but fetches instructions
from a single thread each cycle. Horizontal multithreading
processors require much higher instruction fetch bandwidth
than superscalar or SMT processors. This will enlarge the
performance gap between processor and memory. In order
to make multiple functional units busy, hence to improve
the overall performance, an instruction cache with a differ-
ent architecture from that for superscalar processors is abso-
lutely required. We examine such instruction cache archi-
tecture for a horizontal multithreading Java processor and
evaluate its performance in this paper.

Java programming language [4] has been widely ac-
cepted by industry and academia because of its powerful
functionality and portability, as well as the popularity of the
Internet. Java programs are compiled to classes, containing
Javabytecodesand data, based on a virtual architecture –
the Java Virtual Machine (JVM) [7]. JVM is a stack-based
architecture, it is not dependent on any particular real ma-
chine.

Java bytecodes are executed in an execution engine. Cur-
rently, the execution engines are implemented mainly in the
following four schemes [10]. The simplest kind of execu-
tion engine is an softwareinterpreterwhich interprets the
bytecode one at a time. Another kind of execution engine is
a just-in-time(JIT) compiler. In this scheme, the bytecodes
of a methodare compiled to native machine code the first
time the method is invoked. The native machine code for
the method is then cached, so the code can be reused the
next time that method is invoked. This scheme is faster than
the first one but requires more memory. A third type of exe-
cution engine is anadaptive optimizer. In this approach, the
virtual machine starts by interpreting bytecodes but moni-
tors the activity of the running program and identifies the
most heavily used areas of code. As the program runs, the
virtual machine compiles and optimizes only these heavily
used areas to native machine code. Lastly, on a Java vir-
tual machine built on top of a chip that executes bytecodes
natively, the execution engine is embedded in the chip.

The picoJavaI [12] and picoJavaII [9] are simple
pipelined Java processors with no support on ILP and TLP
exploitation. Sun Microsystems’ Microprocessor Architec-
ture for Java Computing (MAJC) [1] design features both
chip multiprocessing and multithreading in order to beef up
performance. MAJC adopts a modified VLIW (very long
instruction word) architecture and up to 4 instructions can
be packed into a 128-bit long instruction word. This means
that the MAJC cannot execute Java bytecodes natively, it
still needs a compiler to compile bytecodes to the instruc-
tions of the MAJC machine. MAJC adopts a vertical multi-
threading technique which switches to another thread when
one thread results in a cache-miss. The vertical multithread-
ing allows the processor execute only one thread at a given

time. MAJC can be implemented with multiple identical
processors on a chip die to support TLP exploitation. Each
processor supports operations on all data types, such as in-
teger, fixed-point, floating-point, and packed integers. Sup-
pose one thread running on a processor needs only integer
operation, then other functional units will not be used, and
cannot be used by other threads running on other proces-
sors. This will result in low utilization of the functional
units. Functional units are cheap, but important thing is that
fully use of functional units can improve processor perfor-
mance. On the other hand, if there is no sufficient TLP,
some processors will be idle.

As network computing gains importance, high perfor-
mance Java processors are demanded. In order to exploit
the ILP and TLP of Java applications efficiently, we pro-
posed a Java processor architecture which has the following
three features.

1. Horizontal multithreading – there are multiple instruc-
tion dispatch slots to support the parallel execution of
Java multiple threads.

2. Vertical multithreading – multiple threads can share
each of the slots.

3. Superscalar – the ILP inside a thread can be exploited.

We call a processor holding these three featuresthree di-
mensional processor(3D processor for short). Note that it
is a processor, not a multiprocessor. In this paper, we in-
vestigate the instruction cache architecture to support the
3D processor. We developed a simulator which investigates
Java bytecode instruction/thread level parallelism and eval-
uates the performance of the instruction cache as well as
the performance Java processor. The simulator consists of a
Java bytecode tracer and a Java processor architectural sim-
ulator. The tracer executes Java class file and records desir-
able information into a trace file. The architectural simula-
tor reads the trace files and processor configurations, eval-
uates the processor performance and the utilization of the
functional units. The tracer was developed in C++. We
used the JNI (Java native interface) [6] and JVMDI (Java
virtual machine debug interface) to load JVM and Java ap-
plications and gathers behavior data during the execution of
the applications. The architectural simulator was developed
in Java. By changing a configuration file, we can change
the processor configuration, such as the number of slots, the
number of banks of the instruction cache, the size of instruc-
tion scheduling window, the number of read/write ports of
stack cache, the number of functional units etc. This sim-
ulator and the simulation results can be helpful for making
the design decisions when high-performance Java proces-
sors are designed.

In [2], Chu and Li investigated the effects of the number
of slots on the performance of a Java processor with the as-
sumption of 100% instruction cache hit ratio. In this paper,

181



Instruction buffer (IB) Instruction scheduling unit (ISU)

Branch
units

Instruction
caches

Reorder
buffers

BRUs IUs FPU MUL DIV LSUs
Data

caches

CDBs

Register
files

Figure 1. Java processor architecture

we describe an architecture of the instruction cache for a 3D
Java processor architecture and give some preliminary sim-
ulation results to show the cache and the processor perfor-
mances. The rest of this paper is organized as follows. Sec-
tion 2 proposes the instruction cache architecture. Section
3 describes the processor architectural simulator. Section 4
gives simulation results. Section 5 concludes the paper and
presents some future research directions.

2. Java Instruction Cache Architecture

Our processor architecture supports both ILP and TLP
exploitation. It consists of multiple dispatching slots, each
slot has a program counter and a register file which can ex-
ploit the ILP by executing multiple bytecodes as well as by
executingpushand pop with zero time. The TLP is ex-
ploited by the parallel execution of multiple threads simul-
taneously. The processor contains multiple functional units
(FUs). The FUs are shared by all slots. We can consider a
slot as a logical processor, and therefore, the processor con-
sists of multiple logical processors. At runtime, each slot
dispatches instructions from a thread so that up ton threads
can be executed in parallel wheren is the number of slots.
If there arem threads andm> n, a slot switches amongm/n
threads on average.

JVM is a stack-based architecture. In the design of a
stack-based processor, the key point for performance im-
provement is to enable the processor to fetch as many
operands as possible. This can be done by designing a fast
stack cache which serves as the stack top area with multi-
ple read and write ports so that the constant, local variable,
stack management, and array elements and fields reference

instructions no need to be executed if these data are located
in the cache – they can be accessed directly through the mul-
tiple ports of the cache. If the accessed data are not in the
cache, the processor loads the data from memory to cache or
store the cache date to memory, just like a load/store RISC
architecture does. We can consider this cache as a register
file in traditional RISC processors. In addition to the mul-
tiple read/write ports cache (register file), a data cache with
a larger size than the register file is still required. When the
processor loads data from main memory to register file, it
also puts the data in the data cache. The register file is at
the top position of the stack. It can be implemented in a
circular structure [12]. When the overflow and underflow
are about to happen, the contents of the register file will be
saved and restored to and from the data cache, respectively.
This can be done in background if an additional read port
and a write port are designed in the register file. Each slot
has its own register file, but the data cache can be shared by
all slots.

Based on the types of Java bytecode instructions, we use
the following kinds of FUs in the Java processor design: in-
teger unit (IU), integer multiplier (MUL) and divider (DIV),
branch unit (BRU), load/store unit (LSU) and floating point
unit (FPU). These FUs are shared by all slots. Except for
integer and floating point dividers, all the FUs are capable
of accepting a new operation on every clock cycle. The Java
processor architecture is shown in Figure 1.

In order to supportout-of-orderexecution, we arrange a
reorder bufferto each of the slots. The execution results
are put into reorder buffer first, and then written to register
file in order in thecommitpipeline stage. The instruction
scheduling scope is equal to the size of the reorder buffer.

182



AddressDataIn

DataOut

Interconnect (multiplexers)

Interconnect (multiplexers)

Port 0 Port 1 Port 2 Port 3

PC 0 PC 1 PC 2 PC 3

Cache bank 0

AddressDataIn

DataOut

Cache bank 1

AddressDataIn

DataOut

Cache bank 2

AddressDataIn

DataOut

Cache bank 3

From main memory
or L2 cache

Figure 2. Instruction cache architecture

PC0

Bank0 Bank1 Bank2 Bank3

PC0

Bank0

PC1

Bank1 Bank2 Bank3

PC0

Bank0

PC1

Bank1

PC2

Bank2 Bank3

PC0

Bank0

PC1

Bank1

PC2

Bank2

PC3

Bank3

(c) 3 threads (d) 4 threads(a) 1 thread (b) 2 threads

Figure 3. Instruction cache and threads

Each slot is provided with a branch unit containing a
branch target buffer(BTB) [5], and each entry in BTB has
a branch predictor. The BTB can be fully associated or set
associated. The number of bits of a branch predictor can be
1 or 2. Instructions are fetched from instruction caches and
put into aninstruction buffer(IB). Then the instructions are
scheduled and issued to FUs by aninstruction scheduling
unit (ISU).

The FUs are provided withreservation stations. Instruc-
tions can be issued to FUs even their source operands are not
ready. The source operands are put into reservation stations
once they are available. There are three sources the source
operands come from: register file, reorder buffer andcom-
mon data buses(CDBs). The CDBs connect the output of
FUs, reorder buffers, register files and reservation stations.
The instructions which are not issued due to resource re-
strictions stay in the IB waiting for being issued next clock
cycle.

Assume that the number of slots isn. In order to fetch in-

structions from multiple threads simultaneously, we arrange
n separated instruction cache banks. Generally, each cache
bank holds instructions of a thread and all the banks can be
accessed in parallel with their corresponding slot PCs. The
fetched instructions fromn banks through their read ports
are put in the IB. The question is that, if there arem threads
andm< n, thenn−mslots will not be used. In order to use
the instruction banks efficiently, an interconnect is inserted
between the cache banks and IB, as shown as in Figure 2.

The usage of the cache banks is described below. On av-
erage, each thread usesk = bn/mcpower2 banks, i.e.,n/m is
rounded to an integer of power of 2. The restn−mkbanks
are used by the first(n−mk)/k threads. That is, each of the
first (n−mk)/k threads uses two-time banks compared to
other threads. Totally, 2k(n−mk)/k+k(m−(n−mk)/k) =
n banks are used bym threads. For example, ifn = 8 and
m= 3, the first thread will use 4 banks and each of the rest
two threads uses 2 banks. Figure 3 shows the usage of a
4-bank cache where the cases ofm = 1,2,3 and 4 are il-

183



lustrated in Figure 3 (a), (b), (c) and (d), respectively. If a
thread uses more than one bank, the higher address bit(s)
left to the bank index is used to select banks.

In the case ofm> n, several threads have to share a sin-
gle bank. Let threadTi , wherei = 0,1, . . . ,m−1, be put in
cache bankB j , where j = 0,1, . . . ,n−1, then we havej = i
mod n. For example, threadTj and threadTj+n for j +n< m
will share cache bankB j . Mapping multiple threads to a
same bank will increase the cache miss ratio due to the in-
terference among the threads if a direct mapping cache bank
is used.

There are two methods to solve this problem. One is
to use set-associative mapping cache such that a differ-
ent thread may be put into a differentway of the cache.
The other is to use coarse-grain multithreading to switch
threads at a given time interval. The first method makes
fine-grain multithreading possible but if the number of
threads mapping to a bank is larger than the ways of the
set-associative cache, the cache performance still suffers.
In addition, cache line replacement is needed for the set-
associative cache, LRU (least recently used) strategy for
instance, which requires extra gate resources. The sec-
ond method requires fast context-switching facility and the
cache will be refilled when the context-switching happens.

Both the methods implement the vertical multithreading.
Note that the threads located in different cache banks can
be executed in parallel (horizontal multithreading). Mean-
while, our Java processor architecture also exploit the ILP
by fetching, issuing and executing multiple instructions
from a single thread (superscalar). We investigate the ef-
fects of the instruction cache on the processor performance
in Section 4.

3. Java Processor Simulator

This section describes the implementation of the proces-
sor simulator.Trace-driven simulationis one of the most
widely used techniques for computer architecture design
and performance evaluation. With this method, a tracer
loads a user application, executes the application insingle
stepmanner, gathers desirable information from each in-
struction and records the information into a trace file that
will be used late by an architectural simulator. This method
requires a large storage space to store trace files. A simi-
lar method is calledexecution-driven simulationby which
the generated trace is fed into the architectural simulator di-
rectly. The execution-driven simulation does not store the
traces as files but it takes longer time for execution than the
trace-driven simulation if an application is used more than
one time: each time the application has to run to generate
its trace. We used trace-driven simulation in our implemen-
tation because a trace file is needed several times for simu-
lating the performance of the processors with different con-

figurations, and also, multiple trace files are needed at same
time for the simulation of multithreaded applications.

There are several ways to trace the execution of a Java
application. A popular one is to develop a tracer that im-
plements Java platform with the function of information ex-
traction. This can be done by customizing the source code
for a JVM implementation, theKaffe virtual machine [11]
for instance. The other way is to use theTracing JVM[13],
a modified JVM which can gather data on the behavior of
Java programs. In our implementation, we use Java Native
Interface (JNI) [6] and JVM Debug Interface (JVMDI) pro-
vided by JDK/JRE 1.3.0_02 for Linux operating environ-
ment. The JNI allows a native application, written in C/C++
for instance, to invoke Java applications and vice versa. The
JVMDI is a programming interface that provides a way both
to inspect the state and to control the execution of applica-
tions running in the JVM. JVMDI provides many functions,
such asset break point, enable single step executionanden-
able event handling.

We use C++ to implement our tracer. We first use JNI
invocation interface to load JVM implementation and Java
application, then call JVMDI functions to set break point at
the beginning of the Java application (main method) and to
enable event handling, and use JNI invocation interface to
invoke the Java application.

Setting break point at the beginning of the Java applica-
tion lets the control transfer to an event handling procedure
when the Java application is invoked first time. The event
handling procedure is invokes not only on break point event,
but also on other events, single step execution for instance.
In the case of break point event, we use JVMDI functions
to enable single step execution and clear all the break points
(only one break point in our case), that is, the the break point
event happens only one time.

Single step execution also lets the control transfer to the
same event handling procedure after finishing the execution
of each instruction. In the event handling procedure, we
extract desirable information for each kind of instructions
and put the information to a trace file. Then the control is
returned back to the single step execution of the Java appli-
cation.

In order to get desirable trace information, it is needed
to use some structure definitions. For example, through
the frame structure definitionjavaframe found in JDK
interpreter.h and a frameid obtained by the JVMDI
GetCurrentFrame function call, we can access constant
pool, program counter of the next instruction, current top of
stack, pointer to this frame’s variables, previous java frame,
program counter of the last executed instruction, method
currently executing, monitor, profiler and start of frame’s
stack.

The following command starts the execution of the tracer
and traces a Java application –javaApp :

184



$ jtracer -Xnoclassgc -Xdebug -Xnoagent \
-Djava.compiler=NONE -Djava.class.path=. \
javaApp

The important options in the command line
are -Xdebug and -Djava.compiler=NONE .
The -Xdebug option enables with debug and
-Djava.compiler=NONE disables JIT compiler.

The trace information which is recorded to a file is de-
scribed follow. For every instruction, the program counter
(PC) and the first byte of bytecodes (opcode) are recorded.
The stack pointer is also recorded for all instructions except
for nop , goto , goto_w , iinc , ret and return . For
the instructions that access memory, the memory address is
evaluated and recorded. For goto, branch, switch, method
invocation and procedure call and corresponding return in-
structions, the target addresses are recorded.

The second component of our simulator consists of a
Java processor architectural simulator written in Java. It
reads trace files and processor configuration, issues instruc-
tions to functional units cycle by cycle, and finally, outputs
the experimental results.

4. Cache Performance Simulation Results

We selected the following Java applications for test-
ing our cache architecture and evaluating the processor
performance. The performance evaluated with trace- or
execution-driven simulation method depends strongly upon
the test applications, so the results presented in this paper
are only for reference and comparison with each other to
show the relative improvement with different cache archi-
tectures.

1. Linpack.java: Linpack benchmark (floating point ma-
trix calculations). 44k instructions are executed.

2. BinTree.java: adds new node with values into a binary
tree using recursive calls. (66k)

3. Dhrystone.java: short dhrystone synthetic benchmark.
(60k)

4. Fibonacchi.java: calculates Fibonacci numbers itera-
tively. (56k)

5. Hanoi.java: solves the Towers of Hanoi puzzle recur-
sively. (91k)

6. MatMult.java: floating point matrix multiplication.
(58k)

7. QSort.java: sorts the elements of an integer array with
a quick sort algorithm. (55k)

8. Sieve.java: generates prime numbers. (70k)

In the current version of our simulator, the processor
configuration can be changed with the following parame-
ters: the number of cache banks, cache line size, the num-

ber of each kind of functional units, the sizes of instruc-
tion buffers, reorder buffers and register files, the numbers
of read and write ports of register files, and the number of
slots. We assume that:

1. The multipliers has a 3-cycle latency and a 1-cycle
throughput (fully-pipelined).

2. Both the throughput and latency of the dividers are as-
sumed 14 clock cycles (non-pipelined).

3. Other FUs are fully pipelined with 1-cycle latency;
however, lookupswitch instructions executed in
BRU require 3 or more cycles andtableswitch in-
structions require 5 cycles.

4. The size of register file is 32 words with 4 read ports
and 2 write ports.

5. The reorder buffer has 32 entries.

6. The data cache is a 4-way set-associated cache with a
32-byte block size. The total size of the data cache is
32K bytes.

7. The BTB has 512 entries organized to 4-way set-
associated. A 2-bit branch predictor is assigned to each
BTB entry.

8. The instruction cache size is 32K bytes and the line
size is 32 bytes. The cache miss penalty is 5 cycles.

First, we investigate the potential ILP of bytecodes and
the requirements for FUs. Toward to this, we assume that
the FUs are always available if required, the hit ratio of the
instruction cache is 100%, and instructions are provided as
many as large enough to find instruction level parallelism
(256 bytes per cycle in the simulation). Tables 1 list the pro-
cessor performance and the functional unit requirements.

Table 1. Processor performance and average
number of functional units required for each
program

Programs IPC BRU IU FPU MUL DIV LSU

Linpack 5.705 0.537 0.485 0.548 0.106 0.391 2.023
BinTree 5.234 0.599 0.422 0.0 0.015 0.015 1.659
Dhrystone 5.470 0.613 0.459 0.0 0.018 0.028 1.664
Fibonacchi 4.775 0.413 0.736 0.0 0.004 0.007 2.249
Hanoi 4.907 0.369 0.365 0.0 0.004 0.007 1.289
MatMult 4.353 0.335 0.272 0.231 0.081 0.007 1.696
QSort 5.278 0.619 0.434 0.011 0.015 0.025 1.643
Sieve 4.517 0.825 0.463 0.0 0.003 4.220 1.587

The column IPC in the table gives the average IPC calcu-
lated by dividing the total number of executed instructions
by the total number of clock cycles. We can find that the

185



IPC is about 5. If we do not count the stack manipulation
instructions, the IPC is about 4.

The required average number of each functional unit is
calculated by dividing the sum of number of a functional
unit required each clock cycle by the total number of clock
cycles. The LSU is highly required for all the applications,
especially for Linpack and Fibonacchi. The Sieve requires
modular operation to find primes so the integer divider is
used heavily. Notice that the divider is non-pipelined with
a latency of 14-cycle. If we use a pipelined divider capable
of accepting one operation per cycle, the average required
number of dividers will be 4.220/14= 0.3.

Next, we test the processor performance with multiple
threads. Java provides the capability ofmultithreading. The
programmer specifies that applications containthreads of
execution, each thread designating a portion of a program
that may execute concurrently with other threads [3]. The
Java program can generate multiple threads and let them
run with start () method. These threads should besyn-
chronizedif there are dependencies. In the other hand, most
modern machines support multiple tasks among which there
may be no any dependency. Those tasks run on a single
thread machine in a context switching manner. Executing
multiple tasks in parallel will improve machine’s through-
put greatly. In order to simplify the implementation, we
assume that a Java application generates 8 threads simulta-
neously, while each thread executes a distinct program of
the 8 applications we used so far.

0

3

6

9

12

15

18

21

24

1 2 4 8

IP
C

Number of slots

Figure 4. IPC vs slots (ideal)

Figure 4 shows the processor IPC performance when the
8 applications are executed concurrently. We change the
number of issuing slots ton with n = 1, 2, 4, 8. The pro-
cessor configuration is the same as the one described above.
On average, 8/n threads share a slot. Each slot usesround
robin to switch among these 8/n threads. The ISU also uses
round robin to select instructions in IB among slots. We can
find that the performance is improved greatly as the number
of slots increases.

0

1

2

3

4

5

6

7

BRU IU FPU MUL DIV LSU

N
um

be
r

of
F

U
re

qu
ire

d

1 slot
2 slots
4 slots
8 slots

Figure 5. The number of FUs required

Figure 5 shows the average number of each functional
unit needed when the 8 applications are executed concur-
rently. The average number of BRUs required is larger than
that of IUs for our test applications. Also, much more LSUs
are required. Executing multiple threads in parallel will mit-
igates the problem of heavy requirement on a particular FU,
the integer divider for example. The table shows that the
LSUs play the key role on the IPC performance. In general,
the utilization of the LSUs is higher than that of other FUs.

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96

1 2 3 4 5 6 7 8

H
it

Number of threads

8 banks
4 banks
2 banks
1 bank

Figure 6. Hit ratio (cache size: 32K bytes)

Now, we consider effects of instruction cache on the pro-
cessor performance. The cache size is 32K bytes and 32
bytes are read from each port. The number of slots is set
to 8. In the design of the Java processor, the number of
banks may be the same as the number of slots, but we want

186



to show here the effect of instruction cache architecture on
the processor performance. Letn = 1, 2, 4, 8 be the num-
ber of instruction cache banks (ports) andm = 1, . . . 8 be
the number of threads. Whenm < 8, some slots will be
idle. Whenm < n, some threads each use more than one
bank, and whenm> n, some banks are shared by multiple
threads and we switch them on every 1024 clock cycles.

The cache performance is shown in Figure 6. As the
number of threads increases the hit ratio decreases due to
the interference among threads. But importantly, the per-
formance of the multiple banks cache is better than that of
single bank cache.

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

IP
C

Number of threads

8 banks
4 banks
2 banks
1 bank

Figure 7. IPC vs banks (8 slots)

Figure 7 shows the IPC performance. The processor per-
formance gains were achieved as the number of cache banks
increases. On the other hand, when the number of threads
reaches the number of banks, further increasing the num-
ber of threads will not improve the processor performance
since some slots finish their execution earlier than others,
that is, some slots will be idle while others are busy. For
example, the IPC is 13.35 in the case ofm = n = 4, but
the IPC decreases to 11.04 whenn = 4 andm= 5, because
threads 0 and 4 share cache bank 0 and other threads in other
banks may finish their execution earlier. The peak IPC per-
formance reaches about 19 in the case of 8 banks, about 5
times better than the case of one bank cache.

5. Conclusion Remarks

A horizontal multithreading Java processor architecture
is proposed and the effects of the instruction cache on the
processor performance are evaluated in this paper. As Java

is accepted by both industry and academia as well as the
network computing gains importance, the development on
high-performance Java processor to execute bytecodes na-
tively becomes interesting. The simulator and the prelimi-
nary simulation results presented in this paper will help us
to make the design decisions.

References

[1] MAJC architecture tutorial. see http://developer.
java.sun.com/developer/products/majc/docs.html.

[2] W. Chu and Y. Li. Performance evaluation of a
multiple-threaded multiple-pipelined java processor.
In Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics, volume V,
Computer Science I, pages 281–286, July 2002.

[3] H. M. Deitel and P. J. Deitel.Java, How to Program.
Printice-Hall, Inc., 1997.

[4] J. Gosling, B. Joy, and G. Steele.The Java Language
Specification. Addison-Wesley, 1996.

[5] J. Lee and A. J. Smith. Branch prediction strate-
gies and branch target buffer design.IEEE Computer,
pages 244–251, January 1984.

[6] S. Liang. The Java Native Interface Programmer’s
Guide and Specification. Addison-Wesley, 1999.

[7] F. Yellin T. Lindholm.The Java Virtual Machine Spec-
ification. Addison-Wesley, second edition, 1999.

[8] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting choice: Instruc-
tion fetch and issue on an implementaber simultane-
ous multithreading processor. InProceedings of the
23rd Annual International Symposium on Computer
Architecture, May 1996.

[9] J. Turley. Microjava pushes bytecode performance
– sun’s microjava 701 based on new generation of
picojava core. Microprocessor Report, pages 9–12,
November 17, 1997.

[10] B. Venners. Inside the JAVA 2 Virtual Machine.
McGraw-Hill, second edition, 1999.

[11] The Kaffe virtual machine. see http://www.kaffe.org/.

[12] Sun’s WhitePaper. Picojava-i microprocessor core
architecture. see http://solutions.sun.com/embedded/
databook/pdf/whitepapers/wpr-0014-01.pdf.

[13] M. Wolczko. Using a tracing java virtual machine to
gather data on the behavior of java applications. see
http://research.sun.com/people/mario/tracing-jvm/.
1999.

187


