
Third International Conference on Parallel and Distributed Computing, Applications and Technologies, Kanazawa, Japan, September 2002, pp.343–350

Fault-tolerant Routing in Metacube

Yamin Li, Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin,speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract

A new interconnection network with low-degree for very
large parallel computers called metacube (MC) has been
introduced recently. The MC network has short diameter
similar to that of the hypercube. However, the degree of an
MC network is much lower than that of a hypercube of the
same size. More than one hundred of millions of nodes can
be connected by an MC network with up to 6 links per node.
The MC network has 2-level cube structure. An MC(k,m)
network that connects2m2k+k nodes with m+ k links per
node has two parameters, k and m, where k is the dimen-
sion of the high-level cubes (classes) and m is the dimen-
sion of the low-level cubes (clusters). In this paper, we give
an efficient algorithm for fault-tolerant routing in MC net-
works. The fault-tolerant routing problem in MC(k,m) is
solved through a special structure in an MC network, called
multi-channel cube. In order to construct k disjoint paths
for each node pair in a multi-channel cube, an innovative
technique, called signature, is introduced.

1. Introduction

The hypercube has been widely used as the interconnec-
tion network in a wide variety of parallel systems such as
Intel iPSC [12], the nCUBE [5], the Connection Machine
CM-2 [11], and SGI Origin 2000 [10]. Ann-dimensional
hypercube (n-cube) contains 2n nodes and hasn edges per
node. If uniquen-bit binary addresses are assigned to the
nodes of ann-cube, then an edge connects two nodes if and
only if their binary addresses differ in a single bit. Because
of its elegant topological properties and the ability to em-
ulate a wide variety of other frequently used networks, the
hypercube has been one of the most popular interconnection
networks for parallel computer systems.

However, the number of edges per node increases log-
arithmically as the total number of nodes in the hypercube
increases. Currently, the practical number of links is limited

to about eight per node [10]. If one node has one processor,
the total number of processors in a parallel system with an
n-cube connection is restricted to several hundreds. There-
fore, it is interesting to develop an interconnection network
which will link a large number of nodes with a small num-
ber of links per node while retaining the hypercube’s topo-
logical properties.

Several variations of the hypercube have been proposed
in the literature. Some variations focused on reduction of
the hypercube diameter, for example the folded hypercube
[1] and crossed cube [2]; some focused on reduction of
the number of edges of the hypercube, for example cube-
connected cycles [9] and reduced hypercube [13]; and some
focused on both, as in the hierarchical cubic network [3].
One major property of the hypercube is: there is an edge
between two nodes only if their binary addresses differ in a
single bit. This property is at the core of many algorithmic
designs for efficient routing and communication in hyper-
cubes. In this paper, we refer to it as the key property. Gen-
erally, variations of the hypercube that reduce the diameter,
e.g. crossed cube and hierarchical cubic network, will not
satisfy this key property.

Recently, Y. Li et al. introduced a new interconnection
network, calledmetacube, or MC network [8]. The MC
network shares many desirable properties of the hypercube
(e.g., the key property of the hypercube, low diameter etc.)
and can be used as an interconnection network for a parallel
computer system of almost unlimited size with just a small
number of links per node. For example, an MC(2,3) with
5 links per node has 16384 nodes and an MC(3,3) with 6
links per node has 227 = 134,217,728 nodes. The number
of nodes connected by the MC is much larger than that of
the HCN or the RH with the same amount of links per node.
The CCC uses only 3 links per node. However, because of
its ring structure, the diameter or the length of the routing
path in CCC is about twice of that of the hypercube. Com-
pared with the CCC, the MC has shorter diameter, length of
the routing path, and the broadcasting time.

In this paper, we give efficient an algorithm for fault-

343

tolerant routing in metacube. The remainder of this paper is
organized as follows. Section 2 introduces the MC network
and its topological properties. Section 3 gives the routing al-
gorithm in metacube. Section 4 introduces a multi-channel
cube structure which is used for fault-tolerant routing in the
metacube. Sections 5 gives the fault-tolerant routing algo-
rithm. Section 6 concludes the paper and presents some
future research directions.

2. Preliminaries

This section formally introduces the MC network, its
topological properties and some related notation. The MC
network is motivated by the dual-cube network proposed by
Li and Peng [6] [7] that mitigates the port limitation prob-
lem in the hypercube network so that the number of nodes
in the network is much larger than that of the hypercube
with a fixed amount of link per node. The MC network in-
cludes the dual-cube as a special case. An MC network has
a 2-level cube structure: high-level cubes represented by
the leftmostk bits of the binary address of the node which
containsm2k + k bits (thesek bits serve as a class indica-
tor), and low-level cubes, called clusters that form the basic
components in the network, represented by thembits of the
remainm2k bits, which occupy the different portions in the
m2k bits for different classes.

More specifically, there are two parameters in an MC
network,k andm. An MC(k,m) containsh = 2k classes.
Each class contains 2m(h−1) clusters, and each cluster con-
tains 2m nodes. Therefore, an MC(k,m) usesmh+ k bi-
nary bits to identify a node and the total number of nodes
is 2n wheren = mh+ k. The value ofk affects strongly
the growth rate of the size of the network. An MC(1,m)
containing 22m+1nodes is called adual-cube. Similarly, an
MC(2,m), an MC(3,m) and an MC(4,m) containing 24m+2

nodes, 28m+3 nodes and 216m+4 nodes are calledquad-cube,
oct-cubeandhex-cube, respectively. Since an MC(3,3) con-
tains 227 nodes, the oct-cube is sufficient to construct prac-
tically parallel computers of very large size. The hex-cube
is of theoretical interest only. Note that an MC(0,m) is a
hypercube.

A node in an MC(k,m) can be uniquely identified by
a (mh+ k)-bit binary number. The leftmostk-bit binary
number defines a class of the node (class_id). There are
h classes. In each class, there are 2mh nodes and each node
is represented by amh-bit binary number. 2m nodes of the
same class form a cluster. Therefore, there are 2m(h−1) clus-
ters in each class. Anm-bit binary number, located in a
special portion of themh-bit (will be explained in the next
paragraph) identifies a node within the cluster (node_id).
Therefore, the (mh+ k)-bit node address in an MC(k,m) is
divided into three parts: ak-bit class_id, an m(h− 1)-bit
cluster_id and anm-bit node_id.

In the following discussion, we useu = (cu,Mu[h−
1], . . . ,Mu[1],Mu[0]) to denote the address of nodeu,
where cu is a k-bit binary number andMu[i], 0 ≤ i ≤
h− 1 are m-bit binary numbers. Letclass_id(u) =
cu, node_id(u) = Mu[cu] × 2cu and cluster_id(u) =
∑h−1

i=0 Mu[i] × 2i − node_id(u). The mh-bit number
node_id(u) + cluster_id(u) is a unique identifier of node
u in classcu. For example,u = 0100111000 in an MC(2,2)
is denoted as node 56 of class 1 and node set(48,52,56,60)
in class 1 forms a cluster withcluster_id = 48.

The links of an MC(k,m) is constructed in the follow-
ing manner. Them-bit field M[c] in the address of a node
of classc forms a low-levelm-cube withm links, namely
cube-edges. Theselow-level m-cubes are calledclusters.
A cluster containing nodeu is denoted asCu. The links
that connect nodes among clusters are calledcross-edges
and are defined as following. For any two nodes whose ad-
dresses differ only in a bit position in the class field, there
is a cross-edge connecting these two nodes. That is, thek-
bit field c forms ahigh-level k-cube which connects those
nodes whose addresses except class field are the same.

0

12

0

38

41

2

0
00
00

0
00
01

0
00
10

0
00
11

0
11
00

0
11
01

0
11
10

0
11
11

1
00
00

1
11
00

1
01
00

1
10
00

0
10
00

0
10
01

0
10
10

0
10
11

0
01
00

0
01
01

0
01
10

0
01
11

1
00
11

1
11
11

1
01
11

1
10
11

1
00
01

1
11
01

1
01
01

1
10
01

1
00
10

1
11
10

1
01
10

1
10
10

class 1class 0 class 0

Figure 1. A metacube MC(1,2)

The addresses of two nodes connected by a cross-edge
differ only on one bit position within thek-bit class field and
there is no direct connection among the clusters of the same
class. Therefore, a node in an MC(k,m) hasm+k links: m
links construct anm-cube cluster andk links construct ak-
cube. For example, the neighbors in the cluster of the node
with address (01,111,101,110,000) in an MC(2,3) have
addresses (01,111,101,111,000), (01,111,101,100,000) and
(01,111,101,010,000). The underlined bits are those that
differ from the corresponding bits in the address of the ref-
erenced node. The two neighbors in the high-level cube are
(00,111,101,110,000) and (11,111,101,110,000).

Fig. 1 shows the structure of an MC(1,2), where the clus-
ter is a 2-cube and there are two classes. Each node has a

344

0 1

2 3

0 4

8 12

252 253

254 255

243 247

251 255

0 16

32 48

0 64

128 192

207 223

239 255

63 127

191 255

1 17

33 49

1 65

129 193

2 18

34 50

2 66

130 194

3 19

35 51

3 67

131 195

4 5

6 7

1 5

9 13

8 9

10 11

2 6

10 14

12 13

14 15

3 7

11 15

class 0 class 1

class 2 class 3

Figure 2. A metacube MC(2,2)

cross-edge attached to a node of the different class. The bi-
nary number shown in the center of a cluster iscluster_id.
Fig. 2 shows the structure of an MC(2,2), where the clus-
ters in the same square are of the same class. The deci-
mal numbers arenode_id +cluster_id. In Fig. 2, there are
22(22−1) = 64 clusters in each square and each cluster is a
2-cube. The figure shows only 4 high-level cubes, each of
which contains a distinct node in the cluster 0 of the class 0.

The ratio of the total number of links in the hypercube
to the total number of links in the MC network is equal to
n/(m+k), wheren = m2k +k. For example, fork = 2 and
m= 3 (n = 14), each of the two networks contains 16384
nodes; the hypercube contains 16384× 14/2 = 114688
links and the MC network contains 16384× (3+ 2)/2 =
40960 links. The reduction in the total number of links for
this example is 73728 links or about 64%.

3. Point-to-point routing in metacube

The problem of finding a path from a source nodes to
a destination nodet, and forwarding messages along the
path is known as the point-to-point routing problem. It is
the basic problem for any interconnection network. In this
section, we describe briefly the point-to-point routing algo-
rithm in metacube [8]. This algorithm is the building block
for the proposed fault-tolerant routing algorithm.

We adopt the following notation. In the metacube
MC(k,m), each node hasm+ k neighbors. Lets(i), 0 ≤
i ≤ k−1, be theith dimensional neighbor of nodes within
the k-cube, that is, the addresses ofs ands(i) differ in the
ith bit position (the rightmost bit is the 0th bit) in the class
field c. Let s(i+k), 0≤ i ≤ m− 1, be theith dimensional
neighbor of nodes in them-cube, that is, the addresses ofs

345

ands(i+k) differ in the ith bit position in the fieldM[c]. Let
s(i, j) = (s(i))(j) for 0≤ i, j ≤m+k−1. We use(u→ v) to
denote a path from nodeu to nodev. If the length of a path
(u→ v) is 1 (through a single edge), the path is denoted as
(u : v), and the edge is denoted as(u,v).

In a graphG = (V,E) whereV is the set of all vertices
(nodes) andE is the set of all edges inG, let P′ = (v0→
vh−1) = (v0 : v1 : . . . : vh−1) be a path from nodev0 to node
vh−1, wherevi ∈V for 0≤ i ≤ h−1 and edge(v j−1,v j) ∈ E
for 1≤ j ≤ h−1. We sayP′ is ahamiltonian pathif (1) P′

contains every node inV and (2) nodesvi (0≤ i ≤ h−1) are
all distinct. LetP= (v0→ vh) = (P′ : vh), wherevh = vi , for
i = 0,1, . . . , or h−2. If vh = v0, thenP becomes ahamilto-
nian cycle1; otherwise, we callP anextended-hamiltonian
path. The length of a hamiltonian path in ak-cube is
2k− 1; the length of a hamiltonian cycle or an extended-
hamiltonian path is 2k. Let a weak-hamiltonian pathbe
a hamiltonian path, a hamiltonian cycle, or an extended-
hamiltonian path. It was shown in [8] that given any two
nodess andt in ann-cube, there exists a weak-hamiltonian
path froms to t.

For each nodeu in the k-cube, letnext(u) be the node
next tou in the weak-hamiltonian path fromcs to ct . Let the
node addresses ofsandt be(cs,Ms[h−1], . . . ,Ms[1],Ms[0])
and (ct ,Mt [h− 1], . . . ,Mt [1],Mt [0]), respectively. For the
routing within anm-cube of classc, we can follow theas-
cending routingstrategy, by which the least significant non-
zero bit of(Ms[c]⊕Mt [c]) is chosen as the first dimension
for routing, and so on. The routing algorithm in an MC(k,m
)is given below. TheLoop will terminate when thebreak
is executed. Notice that the details of routing in them-cube
is omitted in the algorithm.

Algorithm 1 (One_To_One_Routing(m,k,s, t))
begin /* build a P = (s→ t) in MC(k,m) */

u = cs; v = s; P = v;
loop always

w = (u,Mv[h−1], . . . ,Mv[u+1],Mt [u],
Mv[u−1], . . . ,Mv[0]);

if (w 6= v) P = (P→ w);
if (w == t) break;
v = w;
w = (next(u),Mv[h−1], . . . ,Mv[u+1],

Mv[u],Mv[u−1], . . . ,Mv[0]);
P = (P : w);
u = next(u);

endloop
end.

In the fault-tolerant routing we discuss late, we need di-
rected hamiltonian cycles. Therefore, we introduce a pa-

1A hamiltonian cycle is defined as a path through a graph which starts
and ends at the same vertex and includes every other vertex exactly once.

rameter,next(s), to assign the direction of a hamiltonian
cycle. For example, in Example 1, if we letnext(s) = 10,
then the hamiltonian cycle for(Cs→Ct) in the high-level
2-cube will be(00 : 10 : 11 : 01 : 00).

Let Hi(s, t), 0 ≤ i ≤ h− 1, be the Hamming distance
betweens and t in M[i], i.e. the number of bits with dis-
tinct values inMs[i] and Mt [i]. From the algorithm, the
longest length of the routing path is 2k + Hh(s, t), where
Hh(s, t) = ∑h−1

i=0 Hi(s, t). This formula gives an upper bound
to d(s, t), the distance betweens andt in an MC(k,m). Let
H(s, t) be the Hamming distance betweens andt. Clearly,
we haveH(s, t)≤ d(s, t)≤Hh(s, t)+2k. BecauseH(s, t) =
Hh(s, t)+ Hk(s, t), whereHk(s, t) is the Hamming distance
betweens and t in c field, we haveH(s, t) ≤ d(s, t) ≤
H(s, t)−Hk(s, t)+ 2k. The longest path in an MC(k,m) is
from s= 0· · ·0 to t, wherect = 0· · ·0 andMt [i] = 1· · ·1 for
all i, 0≤ i ≤ h−1. The length of this path is 2k(m+1). It
is easy to see that this path is the shortest path for connect-
ing s and t. Therefore, it is the diameter of an MC(k,m).
Since the average distance in each cluster ism/2, the av-
erage distance between any two nodes in an MC(k,m) is
at most(m/2)2k +2k = (n−k)/2+2k, wheren = m2k +k
(in the case of hamiltonian path, it is(n− k)/2+ 2k− 1).
Notice that it is possible to have a routing algorithm in an
MC(k,m) which bypasses the classc if Ms[c] = Mt [c]. In
such a case, the length of the routing path for somes andt
might be shorter than that produced by the algorithm above.

4. Multi-channel cube

In this section, we will describe a structure in the
metacube, calledmulti-channel cube. This structure is use-
ful for designing algorithms in MC(k,m) based on hyper-
cube algorithms. We will use this structure for solving fault-
tolerant routing problem in the metacube.

Let Cu andCv be two distinct clusters in an MC(k,m),
h = 2k. A multi-channel cube is defined asCu∪Cv∪E,
whereE is a set ofk2m disjoint paths connectingCu and
Cv, k paths for each node pair(ui ,vi), ui ∈Cu, vi ∈Cv, for
i = 0,1, . . . ,2m− 1. In the other word,E = ∪

i, j
(ui → vi) j ,

0≤ i ≤ 2m−1 and 0≤ j ≤ k−1, and(ui1→ vi1) j1∩ (ui2→
vi2) j2 = /0 if i1 6= i2 or j1 6= j2.

Figure 3 shows an example of a multi-channel cube. The
dotted line denotes a path, not an edge. In the case of a
traditional n-cube, there is an edge(u,v) connecting two
nodesu andv for u∈ 0-subcube andv∈ 1-subcube. Instead
of an edge, the two nodes of a node pair in a multi-channel
cube are connected byk disjoint paths.

The major problem in constructing thek disjoint paths is
that the path(ui → vi) j , 0≤ i ≤ 2m−1 and 0≤ j ≤ k−1,
will just advance through cross-edges whenMui [l] = Mvi [l]
for some l , 0 ≤ l ≤ 2k − 1. This will cause two paths

346

k paths

Cu

Cvu0

v0

Figure 3. A multi-channel cube

along the distinct dimensions in thek-cube to intersect at
some vertex. For example, in an MC(2,2), the paths from
0000000000 to 1111000000 along dimensions 0 and 1 will
meet at a common vertex of 1100000000. To guarantee the
k paths are disjoint, each path needs a uniquesignaturede-
fined through akey-bit. A key-bit is a bit in a node address.
It will be assigned to each of thek neighbors of nodeui to
carry the signature that is unique to the path through that
neighbor before applying the point-to-point routing algo-
rithm using a hamiltonian cycle. If we say “the key-bit is
at the dimensionx”, it means that, negating the value of the
key-bit of a node will get the address of that nodes’xth di-
mensional neighbor. Thek+m dimensions of an MC(k,m)
are 0,1, . . . ,k−1,k,k+1, . . . ,k+m−1.

The key-bit can be determined as below. Notice that all
thecui , theclass_id of nodeui ∈Cu, for i = 0,1, . . . ,2m−1,
are the same, so we usecu to denotecui . In such a case, node
u may be any of nodeui , 0≤ 2m−1. cv does also. We use

c(j)
u andc(j)

v to denotecu(j) andcv(j) , respectively. In the case

of cu = cv, if we can find a bit whereMu[c
(j)
u] andMv[c

(j)
v]

have the same value, then let that bit be the key-bit (type
1); otherwise, take any bit as the key-bit (type 2). The idea
behind this is to enforce a signature (changing the key-bit
value) before applying the point-to-point routing algorithm.
In the case of type 1, the key-bit should be removed finally.

In the case ofcu 6= cv, the construction ofk disjoint paths
has two parts. The first part is the same as the case ofcu = cv

and the second part is to construct the subpaths that contain
cross-edges only, since after the first part finished, the up-
dating of fieldsM[i], 0≤ i ≤ 2k−1, has been done. To guar-
antee the paths are disjoint, for the second part, we should
find k disjoint class-paths in thek-cube. This can be done
as the same manner as a traditional hypercube does. We
summarize it below.

Let x andy be two nodes in ann-cube and the Hamming
distance betweenx and y, |x⊕ y| > 1. Let Z j = (x(j) →
y), 0≤ j ≤ n−1, aren disjoint paths in ann-cube,d paths
are of length(d−1) and(n−d) paths are of length(d+1),
whered = |y⊕ x| is the Hamming distance betweenx and
y. Without loss of generality, we assume that thed paths of

length(d−1) are(x(j)→ y((j+1) modd) : y), 0≤ j ≤ d−1,
and the(n−d) paths of lengthd+1 are(x(j)→ y(j) : y), d≤
j ≤ n−1.

Let the two clusters be Cu = (cu,Mu[h −
1], . . . ,Mu[cu + 1],∗,Mu[cu − 1], . . . ,Mu[0]) and
Cv = (cv,Mv[h−1], . . . ,Mv[cv+1],∗,Mv[cv−1], . . . ,Mv[0]).
Let HC be a hamiltonian cycle inHk. In what follows,
we give an algorithm for pairing up the nodes inCu and
Cv and constructingk disjoint paths for each pair. In the
algorithm, the hamiltonian path that follows the direction

of (ui → u(j)
i) will be used.

Algorithm 2 (Multi_Channel_Cube(Cu,Cv))
begin
Case 1:cu = cv. We pair up nodesui ∈Cu andvi ∈Cv so

that Mui [cu] = Mvi [cv], for i = 0,1, . . . ,2m− 1. Find

a 0 in Mui [c
(j)
u]⊕Mvi [c

(j)
v] from rightmost bit. If the

bit position bex, let the key-bit is at the dimension

y = k + (x modk). Then (ui → vi) j = (ui : u(j)
i :

u(j,y)
i : u(j,y,l)

i → v(j)
i : vi), where(u(j,y)

i : u(j,y,l)
i) is an

one-step path inHC and(u(j,y,l)
i → v(j)

i) is a path con-
structed by Algorithm 1, fori = 0,1, . . . ,2m−1, and
j = 0,1, . . . ,k−1.

Case 2: cu 6= cv. We pair up nodesui and vi so that
Mui [cu]⊕Mvi [cv] = Mui [cv]⊕Mvi [cu]. Let wi, j be of

classc(j)
u and itscluster_id + node_id equal to that

of vi , i.e. wi, j differs with vi at field c only. In what

follows, if u(j)
i = wi, j , the pathu(j)

i → wi, j will be re-

placed withu(j)
i .

Case 2.1:|cu⊕ cv| = 1. Let the bit position where
cu and cv have different value beq. We have
wi,q = vi in this case. The path in dimensionq

is (ui : u(q)
i → v(q)

i : wi,q = vi), where(u(q)
i →

v(q)
i) is constructed by Algorithm 1. The rest

k−1 paths are(ui : u(j)
i : u(j,y)

i : u(j,y,l)
i → wi, j :

v(j)
i : vi), 1≤ j ≤ k−1, whereu(j)

i : u(j,y)
i is a

signature,(u(j,y)
i : u(j,y,l)

i) is an one-step path in

HC, and path(u(j,y,l)
i → wi, j) is constructed by

Algorithm 1, for 0≤ j ≤ k−1, j 6= q.
Case 2.2:|cu⊕ cv| > 1. The firstd paths are(ui :

u(j)
i : u(j,y)

i →wi, j → v((j+1) modd)
i : vi), 0≤ j ≤

d− 1, where(u(j)
i : u(j,y)

i) is a signature, path

(u(j,y)
i → wi, j) is the path constructed by Algo-

rithm 1, and path(wi, j → v((j+1) mod d)
i : vi) is

constructed by the cross-edges specified byZ j .

The restk−d paths are(ui : u(j)
i : u(j,y)

i →wi, j→
v(j)

i : vi), d ≤ j ≤ k−1, where(u(j)
i : u(j,y)

i) is

a signature, path(u(j,y)
i → wi, j) is the path con-

structed by Algorithm 1, and path(wi, j → v(j)
i :

347

Table 1. Multi-channel examples

Example 1 Example 2 Example 3 Example 4
(0000000000,0001000000) (0000000000,0001011100) (0000000000,0100001111) (0000000001,1101000000)
P0 (j = 0) P1 (j = 1) P0 (j = 0) P1 (j = 1) P0 (j = 0) P1 (j = 1) P0 (j = 0) P1 (j = 1)

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 0000000001
0100000000 1000000000 0100000000 1000000000 0100000000 1000000000 0100000001 1000000001
0100000100 1000010000 0100000100 1000100000 0100000100 1000010000 0100000101 1000010001
1100000100 1100010000 1100000100 1100100000 0100001100 1100010000 1100000101 1100010001
1101000100 1101010000 1101000100 1101100000 1100001100 0100010000 1101000101 1101010001
1001000100 0101010000 1001000100 0101100000 1000001100 0100010100 1001000101 0101010001
0001000100 0001010000 1001010100 0101100100 0000001100 0100011100 0001000101 0001010001
0101000100 1001010000 0001010100 0101101100 0000001101 0000011100 0001000100 0001010000
0101000000 1001000000 0101010100 0001101100 0000001111 0000011101 0101000100 1001010000
0001000000 0001000000 0101011100 1001101100 0100001111 0000011111 0101000000 1001000000

0001011100 1001111100 1000011111 1101000000 1101000000
1001011100 1000001111
0001011100 1100001111

0100001111

vi) is constructed by the cross-edges specified
by Z j .

end.

Example 1: Assumem = k = 2. cu = cv = 0, Cu =
{0,1,2,3} andCv = {64,65,66,67}. According to the al-
gorithm, the four node pairs are(0,64), (1,65), (2,66),
(3,67). We only show the two paths for(0,64), so the
simplified notationsu = 0 andv = 64 are used (ignoredi
for i = 0,1,2,3). SinceMu[1] = Mv[1] = 00 andMu[2] =
Mv[2] = 00, we choosey = 2 for both j = 0 and 1 as a
key-bit of type 1. The two paths from node 0 to node
64 of class 0 are shown in Table 1. The key-bit is shown
with boldface.|P0|= |P1|= d(u,v)+4 = 5+4 = 9, where
d(0,64) = H(0,64)+22 = 1+4 = 5.

Example 2: Assumem = k = 2. cu = cv = 0, Cu =
{0,1,2,3} andCv = {92,93,94,95}. (0,92) a pair. Letu =
0 andv = 92. SinceMu[1] = 00 andMv[1] = 11, we choose
y = 2 for j = 0 as a key-bit of type 2. SinceMu[2] = 00 and
Mv[2] = 01, we choosey= 3 for j = 1 as a key-bit of type 1.
The two paths from node 0 to node 92 are shown in Table 1.
|P0| = d(u,v)+ 2 = 10 and|P1| = d(u,v)+ 4 = 12, where
d(0,92) = H(0,92)+22 = 4+4 = 8.

Example 3: Assumem = k = 2. cu = 0, cv = 1, Cu =
{0,1,2,3} andCv = {3,7,11,15}. The four pairs of the
two clusters are(0,15), (1,11), (2,7), (3,3). To construct
the two paths for pair(0,15), we notice that|cu⊕ cv| = 1

andc(0)
u = cv. Therefore, we construct pathP0 by Case 2.1.

We choosey = 2 for j = 1. The two paths from nodeu =
0000000000 to nodev= 0100001111 are shown in Table 1.
|P0|= d(u,v)+1= 9, |P1|= d(u,v)+4+ |Z1|= 8+4+1=

13, whered(0,15) = H(0,15)+22 = 4+4 = 8.

Example 4: Assumem = k = 2. cu = 0, cv = 3, Cu =
{0,1,2,3} andCv = {0,64,128,192}. The four pairs of the
two clusters are(0,0), (1,64), (2,128), (3,192). Since
|cu⊕ cv| = 2, we construct pathP0 andP1 for pair (1,64)
by Case 2.2. We choosey = 2 for both j = 0 and 1. Since

c(0)
u = c(1)

v andc(1)
u = c(0)

v , we have|Z0|= |Z1|= 1. The two
paths from nodeu = 0000000001 to nodev = 1101000000
are shown in Table 1.|P0|= |P1|= d(u,v)+4+ |Z1|= 5+
4+1 = 10, whered(1,64) = H(1,64)+22 = 1+4 = 5.

We first prove that thek paths(u : u(j) → v(j) : v), 0≤
j ≤ k−1, constructed in Case 1, are disjoint. For any two
pathsPj1 andPj2, if one of them has a key-bit of type 1 then
it is clear that they cannot intersect each other since no other
path will change the value of that key-bit. If the key-bits of
the two paths are of type 2, from the definition of type 2
key-bit, we know that the two paths cannot intersect each
other when we use the nodes in the hamiltonian cycle that

are notc(j1)
u nor c(j2)

u . At nodec(j1)
u ∈ Hk, pathPj2 updates

the values in fieldM[c(j1)] and the values in the fieldM[c j2)]
was partially updated only (the key-bit changed and other
bits unchanged), however, the values in the fieldM[c(j2)]
for Pj1 is either unchanged or fully updated. Therefore, two
paths cannot meet at the nodes of classc(j1). Similarly, they

cannot meet at the nodes of classc(j2)
u . We conclude that

thek paths are disjoint. Next, since each pair(ui ,vi) has a
uniquenode_id and this uniquenode_id will become part

of thecluster_id of the nodes in path(u(p)
i → v(q)

i), different
paths cannot pass through the same cluster. Therefore, all
k2m paths for connectingCu andCv are disjoint for Case 1.

348

To show thek paths for each node pair constructed
in Case 2 are disjoint, we divide each path into to parts,

(u(j)
i →wi, j) and(wi, j → vi). Since the first part of the path

includes a signature (exceptPq in Case 2.1), they should
be disjoint following the same argument as in Case 1 (the
argument is true even one of the paths does not carry sig-
nature). Moreover, it is also disjoint with the second part
of other paths because of its unique signature. The sec-
ond parts of the pathsPj , 0 ≤ j ≤ k− 1, contain only
the cross-edges that are identical to the disjoint class paths
Z j , they are also disjoint. Therefore, thek paths con-
structed by the algorithm are disjoint. To prove that theh
sets of paths(ui → vi), 0 ≤ i ≤ 2m− 1 are disjoint also,
we argue as follows: First for eachui , consider the paths

(ui → u(j)
i → wi → w′i), wherecw 6= cv andcnext(wi) = cv,

cw′i
6= cv andcprev(w′i)

= cv. From the algorithm, we know
that theh sets of paths(ui→wi) are disjoint since the value
Mui [cu] is different for everyui ∈Cu andMui [cu] is part of

the cluster_id of every node in path(u(j)
i → w′i). In path

(wi → w′i), the valueMui [cv] is changed toMvi [cv]. Since
Mui [cu]⊕Mvi [cv] = Mui [cv]⊕Mvi [cu], Mvi [cv] takes different
values for everyui . That is, nodew′i is in distinct clusters
for everyui . SinceMvi [cv] is part of thecluster_id of ev-
ery node in path(w′i → vi), the h sets of paths(w′i → vi)
are also disjoint. Therefore, we conclude that all paths for
connecting the clustersCu andCv are disjoint for Case 2.

From the path construction in Case 1, the length of the
longest path(ui → vi) is |(ui → vi)| = d(ui ,vi)+ 4, where
d(ui ,vi) = H(ui ,vi)+2k, H(ui ,vi) is Hamming distance be-
tween ui and vi . From the path construction in Case 2,
the longest length of the paths(ui → vi) is |(ui → vi)| =
d(ui ,vi) + 4+ max0≤ j≤k−1{|Z j |} ≤ d(ui ,vi) + m+ 5. We
summarize the results in the following theorem.

Theorem 1. Given any two clusters Cu and Cv in MC(k,m),
we can find a multi-channel cube Cu∪Cv∪E, where E is
a set of k2m disjoint paths connecting Cu and Cv, k paths
for each node pair(ui ,vi), ui ∈Cu, vi ∈Cv, and the length
of the paths in E is at mostmax(d(ui ,vi))+ m+ 5, for i =
0,1, . . . ,2m−1.

5. Fault-tolerant routing

With the multi-channel cube structure, the fault-tolerant
routing problem can be solved efficiently in an MC(k,m) as-
suming that there are up tok+m−1 faulty nodes. The fault-
tolerant routing from sources to destinationt in hypercube
has been solved in [4]. The hypercube algorithm is summa-
rized below. First, we partition then-cube into two(n−1)-
dimensional subcubes along a dimensionk such thats and
t are in the distinct subcubes. If the subcube containingt
has less faulty nodes then we routes to the subcube con-
tainingt by a fault-free path of length at most 2:(s→ s(k))

or (s→ s(j,k)) for some j, 0≤ j ≤ n−1, j 6= k. Then the
problem is reduced to the sub-problem in the subcube con-
taining t. Repeat this process at most logn times until the
subcube contains no faulty node. The path(s→ s(j,k)) is a
bad candidate if thejth bit of s is the same as that oft (a
bad candidate will increase the length of the routing path).
The algorithm guarantees that the bad candidate is used by
at most one partition. It was shown in [4] that given two
nonfaulty nodess and t, and up ton− 1 faulty nodes in
an n-cube, we can find a fault-free path of length at most
d(s, t)+2 in O(n) time.

Under the conditionsk ≤ m and the number of faulty
nodes inCs∪Ct is at mostm, we show that an efficient al-
gorithm for fault-tolerant routing froms to t in MC(k,m)
can be found. For most of the interesting MC(k,m), we have
k≤mas indicated in the previous sections. Statistically, the
condition that there are at mostm faculty nodes in the two
clusters is held with very high probability. Assuming uni-
form distribution, the probability of at mostm fault nodes in

Cs∪Ct is
m
∑

i=0

(m+k−1
i

)(2m2k+k−(m+k−1)
2m+1−i

)

/
(2m2k+k

2m+1

)

≈ 1. For ex-

ample, the probability is 3186303/3186304= 0.99999969
in the case ofk = m = 2. An algorithm for fault-tolerant
routing under the conditions above in an MC(k,m) is given
below.

Algorithm 3 (Fault_Tolerant_Routing(k,m,s, t))
begin

Case 1:Cs = Ct . If Cs contains at mostm−1 faulty nodes
then we apply the hypercube algorithm. Otherwise,
at leastm faulty nodes are inCs. We findk disjoint
paths(s→ t) outside the clusterCs as follows:Pj =
(s : s(j) : s(j,k) : s(j,k, j) → t(j,k, j) : t(j,k) : t(j) : t), 0≤
j ≤ k− 1, wheres(j,k, j) and t(j,k, j) are in the same
cluster 6= Cs. Since there at mostk−1 faulty nodes
outside the clusterCs, there exists a fault-free pathPj .

Case 2:Cs 6= Ct . We create a multi-channel cube withCs

andCt as described in the previous subsection. Since
there are at mostm fault nodes inCs∪Ct , we can find
a fault-free path of length at mostd(s, t)+2 in O(m)
time in the(m+ 1)-cube formed byCs∪Ct . If the k
paths(u→ v) of the multi-channel cube, which cor-
respond to a single(m+1)th dimensional cube-edge,
are all faulty, then we markv as a faulty node. If
the number of faulty nodes inCs∪Ct is m, then no
marked faulty node will be created. Otherwise, since
a marked faulty node consumesk faulty nodes out-
side clustersCs andCt , the total number of faulty and
marked faulty nodes will be at mostm+ 1−1 = m.
Therefore, we can apply the hypercube algorithm,
and find a fault-free path in the(m+1)-cube formed
byCs∪Ct . Replacing the(m+1)th dimensional cube-
edge(u,v) in the fault-free path(s→ t) by a fault-free

349

path(u→ v) in multi-channel cube, we find a fault-
free path(s→ t) in MC(k,m).

end.

Next, we analyze the length of the fault-free path and
the running time of the algorithm in MC(k,m). For Case
1, If there are at mostm− 1 faulty nodes inCs then a
fault-free path of length at mostd(s, t) + 4 can be found
in O(m) time. Otherwise, a fault-free path of length at
mostd(s, t)+6 that passes through nodes outside the clus-
ter can be found inO(km2k) time. For Case 2, the algorithm
takesO(m) time to find a fault-free path in the(m+ 1)-
cube. To check whether thek paths in the multi-channel
cube which correspond to a single(m+ 1)th cube-edge,
are all faulty or not takesO(km2k) time. Since this pro-
cess is repeated at most twice, the fault-free path in the
multi-channel cube can be found inO(km2k) = O(kn) time,
where 2n is the number of nodes in MC(k,m). Since the
path(u→ v) in the multi-channel cube which corresponds
to a single cube-edge is of length at mostd(u,v) + m+ 5,
and |(s→ u)| ≤ 1, |(v→ t)| ≤ m (from the hypercube al-
gorithm) the length of the fault-free path in MC(k,m) is at
mostd(s, t)+2+2m+m+5 = d(s, t)+3m+7.

Example 5: Considers= 0100000111 andt = 0000000011
in MC(2,2). Assume that nodess(i), i = 0,1, and node
0100000011 are faulty. The 3-cube formed byCs∪Ct ,
whereCs = {3,7,11,15}, Ct = {0,1,2,3}, has the edges
(3,3),(7,2),(11,1) and (15,0), for connectingCs andCt .
Since s(i), i = 0,1, are faulty, we mark node 2 of class
0 faulty. Then there are two faulty nodes in the 3-cube.
Therefore, we can find a fault-free path as follows:(7 :
15→ 0 : 1 : 3). Finally, replacing the edge(15,0) by a path
(0100001111→ 0000000000) given in Example 3, we get a
fault-free path(s→ t) of length 13+3= 16. Sinced(s, t) =
1+ 4 = 5, we have|(s→ t)| < d(s, t)+ 3m+ 7 = 18. We
summarize the result of the above argument into the follow-
ing theorem.

Theorem 2. Given any two nonfaulty nodes s and t, and
at most m+ k− 1 faulty nodes in MC(k,m), if k≤ m and
the number of faulty nodes in Cs∪Ct is at most m, then a
fault-free path(s→ t) of length at most d(s, t) + 3m+ 7
can be found in O(kn) time, where the number of nodes in
MC(k,m) is2n.

6. Conclusion and future work

In this paper, we introduced an algorithm for fault-
tolerant routing in the metacube. The metacube can be used
as an interconnection network for very large scale paral-
lel computers connecting hundreds of millions nodes with
up to 6 links per node. For this reason, the issue of fault-
tolerance in metacube is very important. We conclude that

the fault-tolerant routing in metacube can be done quite ef-
ficiently. Some other issues concerning the metacube listed
below are worth further research.

1. Evaluate the architecture complexity vs. performance
of benchmarks vs. real cost.

2. Investigate the embedding of other frequently used
topologies into the metacube.

3. Develop the techniques for mapping application algo-
rithms onto the metacube.

References

[1] A. E. Amawy and S. Latifi. Properties and performance of
folded hypercubes.IEEE Transactions on Parallel and Dis-
tributed Systems, 2:31–42, 1991.

[2] K. Efe. The crossed cube architecture for parallel compu-
tation. IEEE Transactions on Parallel and Distributed Sys-
tems, 3(5):513–524, Sep. 1992.

[3] K. Ghose and K. R. Desai. Hierarchical cubic networks.
IEEE Transactions on Parallel and Distributed Systems,
6(4):427–435, April 1995.

[4] Q.-P. Gu and S. Peng. Optimal algorithms for node-to-node
fault tolerant routing in hypercubes.The Computer Journal,
39(7):626–629, 1996.

[5] J. P. Hayes and T. N. Mudge. Hypercube supercomputers.
Proc. IEEE, 17(12):1829–1841, Dec. 1989.

[6] Y. Li and S. Peng. Dual-cubes: a new interconnection net-
work for high-performance computer clusters. InProceed-
ings of the 2000 International Computer Symposium, Work-
shop on Computer Architecture, pages 51–57, December
2000.

[7] Y. Li and S. Peng. Fault-tolerant routing and disjoint paths in
dual-cube: a new interconnection network. InProceedings
of the 2001 International Conference on Parallel and Dis-
tributed Systems, pages 315–322. IEEE Computer Society
Press, June 2001.

[8] Y. Li, S. Peng, and W. Chu. Metacube – a new inter-
connection network for large scale parallel systems.Aus-
tralian Computer Science Communications, 24(3):29–36,
Jan. 2002.

[9] F. P. Preparata and J. Vuillemin. The cube-connected cy-
cles: a versatile network for parallel computation.Commun.
ACM, 24:300–309, May 1981.

[10] SGI. Origin2000 Rackmount Owner’s Guide, 007-3456-
003. http://techpubs.sgi.com/, 1997.

[11] L. W. Tucker and G. G. Robertson. Architecture and applica-
tions of the connection machine.IEEE Computer, 21:26–38,
August 1988.

[12] B. Vanvoorst, S. Seidel, and E. Barscz. Workload of an
ipsc/860. InProceedings of the Scalable High-Performance
Computing Conference, pages 221–228, 1994.

[13] S. G. Ziavras. Rh: a versatile family of reduced hyper-
cube interconnection networks.IEEE Transactions on Par-
allel and Distributed Systems, 5(11):1210–1220, November
1994.

350

