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Abstract to about eight per node [10]. If one node has one processor,

the total number of processors in a parallel system with an
A new interconnection network with low-degree for very n-cube connection is restricted to several hundreds. There-
large parallel computers called metacube (MC) has been fore, it is interesting to develop an interconnection network
introduced recently. The MC network has short diameter which will link a large number of nodes with a small num-
similar to that of the hypercube. However, the degree of an ber of links per node while retaining the hypercube’s topo-
MC network is much lower than that of a hypercube of the logical properties.

same size. More than one hundrec_j of miIIion_s of nodes can  geyeral variations of the hypercube have been proposed
be connected by an MC network with up to 6 links per node. i, the Jiterature. Some variations focused on reduction of
The MC network has 2-Ikevel cube structure. An M@K the hypercube diameter, for example the folded hypercube
network that connect@™ ** nodes with mtk links per 1] and crossed cube [2]; some focused on reduction of
node has two parameters, k and m, where k is the dimen-the number of edges of the hypercube, for example cube-
sion of the high-level cubes (classes) and m is the dimen-connected cycles [9] and reduced hypercube [13]; and some
sion of the low-level cubes (clusters). In this paper, we give focused on both, as in the hierarchical cubic network [3].
an efficient algorithm for fault-tolerant routing in MC net-  One major property of the hypercube is: there is an edge
works. The fault-tolerant routing problem in MC(k) is  petween two nodes only if their binary addresses differ in a
solved through a special structure in an MC network, called single bit. This property is at the core of many algorithmic
multi-channel cube. In order to construct k disjoint paths designs for efficient routing and communication in hyper-
for each node pair in a multi-channel cube, an innovative cubes. In this paper, we refer to it as the key property. Gen-
technique, called signature, is introduced. erally, variations of the hypercube that reduce the diameter,
e.g. crossed cube and hierarchical cubic network, will not
satisfy this key property.
1. Introduction Recently, Y. Li et al. introduced a new interconnection
network, calledmetacube or MC network [8]. The MC
The hypercube has been widely used as the interconnechetwork shares many desirable properties of the hypercube
tion network in a wide variety of parallel systems such as (€9~ the key property of the hypercube, low diameter etc.)
Intel iPSC [12], the nCUBE [5], the Connection Machine and can be used as an |ntercon_ne_ct|0n_netwprk_for aparallel
CM-2 [11], and SGI Origin 2000 [10]. Am-dimensional ~ COmMputer system of almost unlimited size with just qsmall
hypercube f-cube) contains 2nodes and has edges per ~ number of links per node. For example, an MIPwith
node. If uniquen-bit binary addresses are assigned to the > links per node has 16384 nodes and an M@J¥vith 6
nodes of am-cube, then an edge connects two nodes if and inks per node has?? = 134,217,728 nodes. The number
only if their binary addresses differ in a single bit. Because Of nodes connected by the MC is much larger than that of
of its elegant topological properties and the ability to em- the HCN or the RH with the same amount of links per node.
ulate a wide variety of other frequently used networks, the Theé CCC uses only 3 links per node. However, because of

hypercube has been one of the most popular interconnectior fing structure, the diameter or the length of the routing
networks for parallel computer systems. path in CCC is about twice of that of the hypercube. Com-

However, the number of edges per node increases |og_pared with the CCC, the MC has shorter diameter, length of

arithmically as the total number of nodes in the hypercube the routing path, and the broadcasting time.
increases. Currently, the practical number of links is limited  In this paper, we give efficient an algorithm for fault-
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tolerant routing in metacube. The remainder of this paperis In the following discussion, we use = (cy,Mylh —
organized as follows. Section 2 introduces the MC network 1],...,My[1],My[0]) to denote the address of node
and its topological properties. Section 3 gives the routing al- where ¢, is a k-bit binary number andVfi], 0 <i <
gorithm in metacube. Section 4 introduces a multi-channelh — 1 are m-bit binary numbers. Letclassid(u) =
cube structure which is used for fault-tolerant routing in the c¢;,, nodeid(u) = My[cy] x 2% and clusterid(u) =
metacube. Sections 5 gives the fault-tolerant routing algo—zihz‘ol Myli] x 2 — nodeid(u). The mhbit number
rithm. Section 6 concludes the paper and presents someode id(u) + cluster id(u) is a unique identifier of node
future research directions. uin classcy. For exampley = 0100111000 in an MC(2)

is denoted as node 56 of class 1 and nod¢462, 56, 60)
2. Preliminaries in class 1 forms a cluster wittluster id = 48.

The links of an MCK, m) is constructed in the follow-
ing manner. Then-bit field M[c] in the address of a node
of classc forms a low-levelm-cube withm links, namely
cube-edges Theselow-level mcubes are calledlusters
A cluster containing node is denoted a£,. The links

This section formally introduces the MC network, its
topological properties and some related notation. The MC
network is motivated by the dual-cube network proposed by

Li and Peng [6] [7] that mitigates the port limitation prob- that connect nodes among clusters are catiess-edges

!er?hin thet hyrIJ(e_r cube r;]eltwork Stﬁ thatthﬂle ?Lf[hmbir of nOdbesand are defined as following. For any two nodes whose ad-
In the network IS much farger than that of the NYpPercube .o qqeg giffer only in a bit position in the class field, there

V\iitz a fi)r:eddarr}oun; of link per ncnlde. ThiM,\C/:Igetwork th is a cross-edge connecting these two nodes. That ik-the
cludes the dual-cube as a special case. An NEwork Nagy; fielq ¢ forms ahigh-level kcube which connects those

a 2-level cube structure: high-level cubes represented by -
the leftmosk bits of the binary address of the node which nodes whose addresses except class field are the same.
containsm2X + k bits (thesek bits serve as a class indica-
tor), and low-level cubes, called clusters that form the basic
components in the network, represented byritasts of the
remainm2X bits, which occupy the different portions in the
m2X bits for different classes.

More specifically, there are two parameters in an MC
network, k andm. An MC(k,m) containsh = 2 classes
Each class containg™®% clusters and each cluster con-
tains 2" nodes Therefore, an MQ(,m) usesmh+ k bi-
nary bits to identify a node and the total number of nodes
is 2" wheren = mh+ k. The value ofk affects strongly
the growth rate of the size of the network. An MQfd
containing 2™ 'nodes is called dual-cube Similarly, an
MC(2,m), an MC(3m) and an MC(4m) containing 2™*?2 f«— class 0—>}«——— class1 ———»|«— class&+|
nodes, ™3 nodes and ™4 nodes are callequad-cube
oct-cubeandhex-cuberespectively. Since an MC(3) con-
tains 27 nodes, the oct-cube is sufficient to construct prac-
tically parallel computers of very large size. The hex-cube
is of theoretical interest only. Note that an MQ{0) is a The addresses of two nodes connected by a cross-edge
hypercube. differ only on one bit position within thk-bit class field and

A node in an MCK,m) can be uniquely identified by there is no direct connection among the clusters of the same
a (mh+ k)-bit binary number. The leftmod-bit binary class. Therefore, a node in an MQf) hasm+ k links: m
number defines a class of the nodéaés id). There are  links construct amm-cube cluster and links construct &-

h classes. In each class, there a8 Bodes and each node cube. For example, the neighbors in the cluster of the node
is represented by mhbit binary number. ? nodes of the  with address (01,111,101,110,000) in an M@ have
same class form a cluster. Therefore, there &2 clus-  addresses (01,111,101,1000), (01,111,101,10000) and
ters in each class. Am-bit binary number, located in a (01,111,101,00,000). The underlined bits are those that
special portion of thenh-bit (will be explained in the next  differ from the corresponding bits in the address of the ref-

Figure 1. A metacube MC(1,2)

paragraph) identifies a node within the clusteode id). erenced node. The two neighbors in the high-level cube are
Therefore, therih+ k)-bit node address in an M&(m) is (00,111,101,110,000) and11111,101,110,000).

divided into three parts: &-bit classid, anm(h — 1)-bit Fig. 1 shows the structure of an MC@), where the clus-
cluster id and anm-bit node id. ter is a 2-cube and there are two classes. Each node has a
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Figure 2. A metacube MC(2,2)

cross-edge attached to a node of the different class. The bi3. Point-to-point routing in metacube

nary number shown in the center of a clusteclisster id.

Fig. 2 shows the structure of an MC@), where the clus- The problem of finding a path from a source nad®

ters in the same square are of the same class. The deciy destination nodé, and forwarding messages along the

mal numbers areode id + cluster id. In Fig. 2, there are  path is known as the point-to-point routing problem. It is

222-1) — 64 clusters in each square and each cluster is athe basic problem for any interconnection network. In this

2-cube. The figure shows only 4 high-level cubes, each of section, we describe briefly the point-to-point routing algo-

which contains a distinct node in the cluster 0 of the class 0. rithm in metacube [8]. This algorithm is the building block
The ratio of the total number of links in the hypercube for the proposed fault-tolerant routing algorithm.

to the total number of links in the MC network is equal to We adopt the following notation. In the metacube

n/(m+k), wheren = m2 + k. For example, fok=2and  MC(k,m), each node ham+ k neighbors. Les?), 0 <

m = 3 (nh = 14), each of the two networks contains 16384 i < k— 1, be theith dimensional neighbor of nodewithin

nodes; the hypercube contains 163844/2 = 114688  thek-cube, that is, the addressessadinds) differ in the

links and the MC network contains 163843+ 2)/2 = ith bit position (the rightmost bit is the Oth bit) in the class
40960 links. The reduction in the total number of links for field c. Letsi™® 0 < i< m-—1, be theith dimensional
this example is 73728 links or about 64%. neighbor of node in them-cube, that is, the addressessof
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ands(+X differ in theith bit position in the fieloM[c]. Let ~ rameter,next(s), to assign the direction of a hamiltonian
s = (1)) for 0 <i, j < m+k—1. We usgu — V) to cycle. For example, in Example 1, if we leext(s) = 10,
denote a path from nodeto nodev. If the length of a path  then the hamiltonian cycle fqiCs — C;) in the high-level
(u—v)is 1 (through a single edge), the path is denoted as2-cube will be(00:10:11:01: 0D

(u:v), and the edge is denoted @sv). Let Hi(s,t), 0 <i < h-—1 be the Hamming distance
In a graphG = (V,E) whereV is the set of all vertices  betweens andt in M[i], i.e. the number of bits with dis-
(nodes) ancE is the set of all edges i, let P’ = (vo — tinct values inMg[i] and M[i]. From the algorithm, the

Vho1) = (Vo:Vi:...:Vh 1) be a path from node to node longest length of the routing path i€ 2 Hy(s,t), where
Vh-1, Wherev; € V for 0 <i <h—1and edggvj_1,vj) € E Hh(s,t) = Zih;ol Hi(s,t). This formula gives an upper bound
for 1< j <h-1. We sayP is ahamiltonian pathf (1) P/ to d(s,t), the distance betweesandt in an MCk, m). Let
contains every node i and (2) nodes; (0<i<h-1)are H(s,t) be the Hamming distance betwegandt. Clearly,
all distinct. LetP = (vo — vi) = (P": Vi), wherev,, = v;, for we haveH (s;t) < d(st) < Hn(st) + 2 Becausd (s;t) =
i=0,1,..., 0orh—2. If vy = vo, thenP becomes &amilto- Hn(s,t) + Hk(s,t), whereH(s,t) is the Hamming distance
nian cyclé; otherwise, we calP anextended-hamiltonian  betweens andt in c field, we haveH(s;t) < d(s,t) <
path The length of a hamiltonian path in lkecube is H(s,t) — Hk(s,t) + 2%, The longest path in an M&(m) is
2X —1; the length of a hamiltonian cycle or an extended- froms=0---0 tot, whereg, =0---0 andM;[i] =1---1 for
hamiltonian path is'2 Let a weak-hamiltonian pattbe alli, 0 <i <h—1. The length of this path istm+1). It
a hamiltonian path, a hamiltonian cycle, or an extended- is easy to see that this path is the shortest path for connect-
hamiltonian path. It was shown in [8] that given any two ing s andt. Therefore, it is the diameter of an MCM).
nodess andt in ann-cube, there exists a weak-hamiltonian Since the average distance in each clustam/g, the av-
path fromstot. erage distance between any two nodes in an k@) is
For each nodes in the k-cube, letnext{u) be the node  at most(m/2)2X + 2X = (n—k) /2+ 2, wheren = m2* + k
next tou in the weak-hamiltonian path from to ¢;. Let the (in the case of hamiltonian path, it {& — k)/2+ 2 — 1).

node addresses sfindt be (cs,Mslh—1],. .., Ms[1], Mg[0]) Notice that it is possible to have a routing algorithm in an
and (c;, M¢[h— 1],...,M[1],M;[0]), respectively. For the  MC(k,m) which bypasses the classif Ms[c] = M[c]. In
routing within anm-cube of clas<, we can follow theas- such a case, the length of the routing path for serardt

cending routingstrategy, by which the least significant non- might be shorter than that produced by the algorithm above.
zero bit of (Mg[c] @ M;[c]) is chosen as the first dimension
for routing, and so on. The routing algorithm in an Mk
)is given below. Thd.oop will terminate when théreak
is executed. Notice that the details of routing in theube

4. Multi-channel cube

is omitted in the algorithm. In this section, we will describe a structure in the
metacube, callechulti-channel cubeThis structure is use-
Algorithm 1 (One_To_One_Routing(k, s,t)) ful for designing algorithms in MG(m) based on hyper-
begin /*build a P = (s—t) in MC(k, m) */ cube algorithms. We will use this structure for solving fault-
u=cgv=sP=v, tolerant routing problem in the metacube.
loop always Let C, andC, be two distinct clusters in an M&(m),
w= (u,My[h—1],...,My[u+ 1], M [u], h = 2. A multi-channel cube is defined &, UC, UE,

My[u—1],...,M,[0]); whereE is a set ofk2™ disjoint paths connectin@, and
if (W#V) P=(P— w); C,, k paths for each node paju;,vi), ui € Cy, v € Cy, for
if (w==t1) break; i=0,1,....,.2"—1. In the other wordg = H(Ui — Vi)j,
V=W, 0<i<2™—1and0< j<k—1,and(u, — Vi,)j, N (Ui, —
W= (next(u),Mv[h— 1], .7MV[U+ 1], Viz)jz =0ifiy 7& inor jl 7& j2-

My[ul, My[u—1],...., My[0]); Figure 3 shows an example of a multi-channel cube. The
P=(P:w); dotted line denotes a path, not an edge. In the case of a
u= nexqu); traditional n-cube, there is an edge,v) connecting two

endloop nodesu andv for u € 0-subcube and € 1-subcube. Instead
end. of an edge, the two nodes of a node pair in a multi-channel
cube are connected liydisjoint paths.
In the fault-tolerant routing we discuss late, we need di-  Tp¢ major problem in constructing thedisjoint paths is
rected hamiltonian cycles. Therefore, we introduce a pa-nat the path(u; — v)j, 0<i<2"—1and 0< j < k—1,
1A hamiltonian cycle is defined as a path through a graph which starts Will just advance through cross-edges win(l] = My, [1]

and ends at the same vertex and includes every other vertex exactly once.for somel, 0 < | < 2K— 1. This will cause two paths
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length(d — 1) are(x(}) — y((i+1) modd) . y) 0<j<d
and the(n—d) paths of lengthl + 1 are(x}) — yti)
j<n-1.

Let the two
1,...
:(C\lyMV[h_l]ﬂv
Let HC be a hamiltonian cycle ify.
we give an algorithm for pairing up the nodesGy and
C, and constructing disjoint paths for each pair.

Cy

VAN

:y)a

clusters be C;, = (cy,Myh —
1,%,Mylcu — 1],...,My[0]) and
My[cy+ 1], %, My[c, — 1],..., My[Q]).
In what follows,

yl

7MU[CU +

In the

algorithm, the hamiltonian path that follows the direction

Figure 3. A multi-channel cube

of (U — u( >) will be used.

Algorithm 2 (Multi_Channel_Cubgy,,C,))

along the distinct dimensions in thecube to intersect at
some vertex. For example, in an Ni&2), the paths from
0000000000 to 1111000000 along dimensions 0 and 1 will
meet at a common vertex of 1100000000. To guarantee the
k paths are disjoint, each path needs a ungjgaaturede-
fined through &ey-bit A key-bit is a bit in a node address.
It will be assigned to each of tHeneighbors of node; to
carry the signature that is unique to the path through that
neighbor before applying the point-to-point routing algo-
rithm using a hamiltonian cycle. If we say “the key-bit is
at the dimension”, it means that, negating the value of the
key-bit of a node will get the address of that nodes'’ di-
mensional neighbor. THe+ m dimensions of an MG m)
areQl,... k—1Kkk+1,....k+ m—1.

The key-bit can be determined as below. Notice that all
thecy, theclass id of nodeu; € C, fori =0,1,...,2"—1,
are the same, so we uggto denote,. In such a case, node
u may be any of node;, 0 < 2™ —1. ¢, does also. We use

andcv to denotec ;) andc,(j), respectively. In the case

of cy = Gy, if we can f|nd a bit Where/lu[cfﬂ)] and M\,[c\(,’)]
have the same value, then let that bit be the key-bit (type
1); otherwise, take any bit as the key-bit (type 2). The idea
behind this is to enforce a signature (changing the key-bit
value) before applying the point-to-point routing algorithm.
In the case of type 1, the key-bit should be removed finally.

In the case o€, # ¢y, the construction df disjoint paths
has two parts. The first part is the same as the cage-ot,
and the second part is to construct the subpaths that contain
cross-edges only, since after the first part finished, the up-
dating of fieldaM[i], 0<i < 2X_1, has been done. To guar-
antee the paths are disjoint, for the second part, we should
find k disjoint class-paths in thiecube. This can be done
as the same manner as a traditional hypercube does. We
summarize it below.

Letx andy be two nodes in an-cube and the Hamming
distance betweer andy, [x@y| > 1. LetZ; = (x) —
y), 0< j <n-1 arendisjoint paths in am-cube,d paths
are of lengthld — 1) and(n—d) paths are of lengtfd + 1),
whered = |y@ x| is the Hamming distance betwegrand
y. Without loss of generality, we assume that thgaths of
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begin
Case 1.c, =

cy. We pair up nodes; € Cy andy; € C, so
that My, [cy] = My, [cy], fori =0,1,...,2"— 1. Find
a0inM, e My, [¢V] from rightmost bit. If the
bit position bex, let the key-bit is at the dimension
y =k+ (x modk). Then (u — v)j = (u : uV :
(J Y) (J Yl _ V(J) ) Where( (J Y. (Is)ﬂ')) is an
one- step path ibiC and(u'¥"
structed by Algorithm 1, for = O, 1,...,2m
j=0,1,...,k—1.

<J)) is a path con-
—1, and

Case 2: ¢y # ¢,. We pair up nodesy, andv; so that

Mui [Cu} @ Mvi [C\/} - Mui [C\/] D Mvi [Cu]. Let VV|7J be Of
classcﬁ” and itscluster id + node id equal to that
of v;, i.e. w; j differs withv; at fieldc only. In what

follows, if ui( D — w; j, the patm( — W j will be re-

placed Withui( ),

Case 2.1:|cy@ ¢, = 1. Let the bit position where
¢y andcy have different value bg. We have
Wi q = Vi in this case. The path in dimensign
is (uj : u(¥
(q)) is constructed by Algorithm 1. The rest

Vi
k— 1 paths argu; : u : uY g0

vWiw), 1<j<k-1, whereuij) uY is a
signature (u : u¥)) is an one- step path in

HC, and path(ui"y") — W j) is constructed by
Algorithm 1, for 0< j <k-1,j #40.
Case 2.2:|c,@cy| > 1. The firstd paths are(y; :

ud):yiy U medd) sy o< j <

d—1, where(u : u('y)) is a signature, path
(U — w; ) is the path constructed by Algo-
rithm 1, and path{w; j — vi((j+1) mod d) i) is
constructed by the cross- edges specifie@py
The resk—d paths aréu; : u :u"Y — w; j —
v v, d < <k— 1 where(u! : u“y)) is
a signature, pat(ui — W, j) is the path con-

structed by Algorithm 1, and patfw; j — vi“) :

Y wig = v), where(u'? —

—>WJ



Table 1. Multi-channel examples

Example 1 Example 2

Example 3 Example 4

(0000000000,0001000000) (0000000000,0001011100) (0000000000,0100001111)) (0000000001,1101000000)

R(1=0 [ (=1 | R({(=0 | (=1

R(j=0 | P(j=1) | R(j=0 | A(j=1

000000@O0
010000000
010000000

0000@O000
10000000
100040000

000000@O0
010000000
010000000

000@m00000
100@00000
1000100000

0000000000

110000000
110100000
100100000
000100000
010100000
010100000

1100a.0000
11010000
01010000
00010000
1001Qa.0000
1001@m0000

000100@00

0001@mO000

110000000
110100000
100100000
100101a00
000101a00
010101a00
010101100

000101100

1100100000
1101100000
0101100000
0101100100
0101101100
0001101100
1001101100
1001111100

0100000000
0100000100
0100001100
1100001100
1000001100
0000001100
0000001101
0000001111

00000000
10000000
1000Qa.0000

00000001
010000001
010000001

00000001
1000@0001
100000001

0100001111

1100Qa.0000
0100a0000
0100a0100
010001100
00001100
0000a1101
0oooai111l
1000a1111

110000001
110100001
100100001
000100001
000100a00
010100a00
010100@00

1100410001
11010001
01010001
00010001
0001a.0000
1001Qa.0000
1001@®@0000

110100@00

1101@®0000

1001011100
0001011100

10001111
1100@1111
0100®1111

vi) is constructed by the cross-edges specified
by Zj.
end.

Example I Assumem=k=2. ¢,=¢,=0, C, =
{0,1,2,3} andC, = {64,65,66,67}. According to the al-
gorithm, the four node pairs ar@®,64), (1,65), (2,66),
(3,67). We only show the two paths fai0,64), so the
simplified notationau = 0 andv = 64 are used (ignored
fori=0,1,2,3). SinceMy[1] = My[1] = 00 andM[2]
My[2] = 00, we choosegy = 2 for bothj =0 and 1 as a
key-bit of type 1. The two paths from node 0 to node
64 of class 0 are shown in Table 1. The key-bit is shown
with boldface.|Ry| = |P| =d(u,v) +4=5+4 =9, where
d(0,64) =H(0,64) +22=1+4=5.

Example 2 Assumem=Kk=2. ¢y=0¢ =0, C =
{0,1,2,3} andC, = {92,93,94,95}. (0,92) a pair. Letu=

0 andv = 92. SinceMy[1] = 00 andM,[1] = 11, we choose

y =2 for j =0 as a key-bit of type 2. Sindd,[2] = 00 and
My[2] = 01, we choosg = 3 for j = 1 as a key-hit of type 1.

The two paths from node 0 to node 92 are shown in Table 1.

|Po] = d(u,v) +2 =10 and|P| = d(u,v) + 4 = 12, where
d(0,92) =H(0,92) +22 =4 +4=8.

Example 3 Assumem=k=2. ¢,=0,¢c, =1, Cy =
{0,1,2,3} andC, = {3,7,11,15}. The four pairs of the
two clusters ar¢0,15), (1,11), (2,7), (3,3). To construct
the two paths for paif0,15), we notice thaic, ®c,| =1
andc&o) = ¢y. Therefore, we construct paly by Case 2.1.
We choosey = 2 for j = 1. The two paths from node =
0000000000 to node= 0100001111 are shown in Table 1.
[Pol=d(u,v)+1=9, [P| =d(u,v) +4+|Z =8+4+1=
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13, whered(0,15) = H(0,15) + 22 =4+ 4 =8.

Example 4 Assumem=k=2. ¢,=0,¢c,=3, Cy =
{0,1,2,3} andC, = {0,64,128 192}. The four pairs of the
two clusters arg0,0), (1,64), (2,128), (3,192). Since
|cu b cy| = 2, we construct patf and Py for pair (1,64)
by Case 2.2. We chooge= 2 for bothj = 0 and 1. Since
cff” = c\(,l) andcﬁl) = f,o>, we haveZg| =|Z;| = 1. The two
paths from node = 0000000001 to node= 1101000000
are shown in Table IRy| = |P1| = d(u,v) + 4+ |Z1| =5+
4+41=10, whered(1,64) = H(1,64)+22 =1+4="5.

We first prove that thé paths(u: uth) — vl :v), 0 <
j <k-—1, constructed in Case 1, are disjoint. For any two
pathsP;, andPj,, if one of them has a key-bit of type 1 then
it is clear that they cannot intersect each other since no other
path will change the value of that key-bit. If the key-bits of
the two paths are of type 2, from the definition of type 2
key-bit, we know that the two paths cannot intersect each
other when we use the nodes in the hamiltonian cycle that
are notcii? norc{!?. At nodec(¥ € H, pathPj, updates
the values in field[cl11)] and the values in the field [c2)]
was partially updated only (the key-bit changed and other
bits unchanged), however, the values in the fielft(2)]
for P, is either unchanged or fully updated. Therefore, two
paths cannot meet at the nodes of cld&s. Similarly, they

cannot meet at the nodes of Claéé?). We conclude that
the k paths are disjoint. Next, since each pair,vi) has a
uniquenode id and this uniquanode id will become part

of thecluster id of the nodes in patfu(® — v\9), different
paths cannot pass through the same cluster. Therefore, all
k2™ paths for connectin@, andC, are disjoint for Case 1.



To show thek paths for each node pair constructed or (s— sU®) for somej, 0< j <n—1, j#k. Then the
in Case 2 are disjoint, we divide each path into to parts, problem is reduced to the sub-problem in the subcube con-
(ui(l) —wi j) and(w j — ;). Since the first part of the path tainingt. Repeat this process at most togmes until the
includes a signature (exceBy in Case 2.1), they should ~Subcube contains no faulty node. The p@th- s'¥) is a
be disjoint following the same argument as in Case 1 (the bad candidate if thgth bit of sis the same as that of(a
argument is true even one of the paths does not carry 5|gbad candidate will increase the Iength of the routing path).
nature). Moreover, it is also disjoint with the second part The algorithm guarantees that the bad candidate is used by
of other paths because of its unique signature. The secat most one partition. It was shown in [4] that given two
ond parts of the path®,, 0 < j < k— 1, contain only nonfaulty nodess andt, and up ton— 1 faulty nodes in
the cross-edges that are identical to the disjoint class path&n n-cube, we can find a fault-free path of length at most

Zj, they are also disjoint. Therefore, thepaths con-

structed by the algorithm are disjoint. To prove that kthe

sets of pathgu; — vi), 0 <i < 2M—1 are disjoint also,

we argue as follows: First for eaal, consider the paths

(Ui — u? — w — W), wherecy # ¢y and Coexw) = Cv,

Cw # ¢y and Cprevw/) = Cv- From the algorithm, we know

that theh sets of path$u; — w;) are disjoint since the value

My [cu] is different for everyy; € C, andMy; [cy] is part of

the cluster id of every node in paﬂ@ui“) — W). In path

(wi — W), the valueM [c,] is changed tdV,[c,]. Since

My, [cu] & My, [cy] = My [cv] & My, [cu], My, [c] takes different

values for everyu;. That is, noden is in distinct clusters

for everyu;. SinceMy,[c,] is part of thecluster id of ev-

ery node in pathiw — v;), the h sets of pathgw — v;)

are also disjoint. Therefore, we conclude that all paths for

connecting the clustefg, andC, are disjoint for Case 2.
From the path construction in Case 1, the length of the

longest pathu; — ;) is |(uy — vi)| = d(u;,V;) + 4, where

d(ui,vi) =H(ui,v) +2K H (ui,v;) is Hamming distance be-

tweenu; andv;. From the path construction in Case 2,

the longest length of the pathis; — v;) is |(u — V)| =

d(ui,vi) +4+ maxp<j<k-1{|Zj|} < d(u,vi)+m+5. We

summarize the results in the following theorem.

Theorem 1. Given any two clusters@and G, in MC(k, m),
we can find a multi-channel cubg, CC,UE, where E is
a set of R™ disjoint paths connecting Cand G, k paths
for each node pai(u;,vi), u; € Cy, vi € C,, and the length
of the paths in E is at moshax(d(u;,Vv;)) + m+5, fori =
0,1,...,2m—1.

5. Fault-tolerant routing

With the multi-channel cube structure, the fault-tolerant
routing problem can be solved efficiently in an M) as-
suming that there are up ket m— 1 faulty nodes. The fault-
tolerant routing from sourcgto destinatiort in hypercube
has been solved in [4]. The hypercube algorithm is summa-
rized below. First, we partition the-cube into two(n— 1)-
dimensional subcubes along a dimenskosuch thats and
t are in the distinct subcubes. If the subcube contaihing
has less faulty nodes then we rowtéo the subcube con-
tainingt by a fault-free path of length at most & — s)
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d(s,t)+2in O(n) time.

Under the conditionk < m and the number of faulty
nodes inCsUGC; is at mostm, we show that an efficient al-
gorithm for fault-tolerant routing frons to t in MC(k, m)
can be found. For most of the interesting MG, we have
k <mas indicated in the previous sections. Statistically, the
condition that there are at mastfaculty nodes in the two
clusters is held with very high probability. Assuming uni-
form distribution, the probability of at most fault nodes in

CSUCt is g (m—#:(*l) (2m2k+k_(m+k_l))/(2m2k+k
i=0

2m+17i 2m+1
ample, the probability is 3186303186304= 0.99999969
in the case ok = m= 2. An algorithm for fault-tolerant
routing under the conditions above in an M) is given
below.

)z 1. For ex-

Algorithm 3 (Fault_Tolerant_Routing(m, s,t))
begin

Case 1Cs=C.. If Cscontains at mosin— 1 faulty nodes
then we apply the hypercube algorithm. Otherwise,
at leastm faulty nodes are ilCs. We findk disjoint
paths(s — t) outside the clusteCs as follows: Pj =
(5: ) - gk - ki) (k) - (3K - (D) :t)7 0<
j <k-—1, wheresiki andt(i:ki) are in the same
cluster Cs. Since there at most— 1 faulty nodes
outside the clusteCs, there exists a fault-free pak.

Case 2:Cs # C;. We create a multi-channel cube witly
andC; as described in the previous subsection. Since
there are at mosh fault nodes irCsUGC;, we can find
a fault-free path of length at modts;t) + 2 in O(m)
time in the(m+ 1)-cube formed byCsUG;. If the k
paths(u — v) of the multi-channel cube, which cor-
respond to a singlém+ 1)th dimensional cube-edge,
are all faulty, then we mark as a faulty node. If
the number of faulty nodes i6s UC; is m, then no
marked faulty node will be created. Otherwise, since
a marked faulty node consumksaulty nodes out-
side cluster€s andG, the total number of faulty and
marked faulty nodes will be at most+1—1=m.
Therefore, we can apply the hypercube algorithm,
and find a fault-free path in th@n+ 1)-cube formed
by CsUG:. Replacing thém+ 1)th dimensional cube-
edge(u,v) in the fault-free patlis— t) by a fault-free



path (u — v) in multi-channel cube, we find a fault-
free path(s—t) in MC(k, m).
end.

Next, we analyze the length of the fault-free path and
the running time of the algorithm in M&(m). For Case
1, If there are at mosm— 1 faulty nodes inCs then a
fault-free path of length at mosi(s,t) + 4 can be found
in O(m) time. Otherwise, a fault-free path of length at
mostd(s,t) + 6 that passes through nodes outside the clus-
ter can be found i@ (km2¥) time. For Case 2, the algorithm
takesO(m) time to find a fault-free path in thém+ 1)-
cube. To check whether tHepaths in the multi-channel
cube which correspond to a singlen+ 1)th cube-edge,
are all faulty or not take®©(km2¥) time. Since this pro-
cess is repeated at most twice, the fault-free path in the
multi-channel cube can be found@{knm2*) = O(kn) time,
where 2 is the number of nodes in M&(m). Since the
path (u — v) in the multi-channel cube which corresponds
to a single cube-edge is of length at mdst,v) + m+5,
and|(s— u)| <1, |(v—t)| < m(from the hypercube al-
gorithm) the length of the fault-free path in MG(n) is at
mostd(s,t) + 2+ 2m+m+5=d(s,t) +3m+7.

Example 5 Considers= 0100000111 and= 0000000011

in MC(2,2). Assume that nodes’), i = 0,1, and node
0100000011 are faulty. The 3-cube formed Gyu C;,
whereCs = {3,7,11,15}, G = {0,1,2,3}, has the edges
(3,3),(7,2),(11,1) and(15,0), for connectingCs andC;.
Sinces®, i = 0,1, are faulty, we mark node 2 of class
0 faulty. Then there are two faulty nodes in the 3-cube.
Therefore, we can find a fault-free path as follow@. :
15— 0:1:3). Finally, replacing the edgel5,0) by a path
(0100001111~ 000000000Dgiven in Example 3, we geta
fault-free path(s—t) of length 13+ 3=16. Sinced(s;t) =
1+4 =5, we havg(s—t)| < d(st)+3m+7=18. We
summarize the result of the above argument into the follow-
ing theorem.

Theorem 2. Given any two nonfaulty nodes s and t, and
at most mt- k — 1 faulty nodes in MC(km), if k< m and
the number of faulty nodes insC G is at most m, then a
fault-free path(s — t) of length at most ¢5,t) + 3m+7
can be found in Ckn) time, where the number of nodes in
MC(k,m) is2".

6. Conclusion and future work

In this paper, we introduced an algorithm for fault-

tolerant routing in the metacube. The metacube can be used

as an interconnection network for very large scale paral-
lel computers connecting hundreds of millions nodes with
up to 6 links per node. For this reason, the issue of fault-
tolerance in metacube is very important. We conclude that
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the fault-tolerant routing in metacube can be done quite ef-
ficiently. Some other issues concerning the metacube listed
below are worth further research.

1. Evaluate the architecture complexity vs. performance
of benchmarks vs. real cost.

2. Investigate the embedding of other frequently used
topologies into the metacube.

3. Develop the techniques for mapping application algo-
rithms onto the metacube.
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