
K-tree Trunk and a Distributed Algorithm for Effective Overlay Multicast on
Mobile Ad Hoc Networks

Yamin Li and Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin, speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract

Overlay multicast protocols construct a virtual mesh
spanning all member nodes of a multicast group. It employs
standard unicast routing and forwarding to fulfill multicast
functionality. The advantages of this approach are robust-
ness and low overhead. However, efficiency and stability
are the issues that must be addressed in the mobile ad hoc
network (MANET) environment. In this paper, we propose
an effective structure for overlay multicast to solve these
problems in MANET. Instead of using a spanning tree on
the virtual mesh, we introduce a simple structure called k-
tree trunk for multicast. A k-tree trunk of a tree is a subtree
with k leaves that minimizes the sum of the distances of all
vertices to the subtree plus the size of the subtree. The k-tree
trunk is more stable and easier to maintain than the span-
ning tree in MANET. The simulation results show that our
approach handles the flexibility and mobility issues in an
overlay multicast protocol effectively, especially when the
group size is large.

Keywords. Mobile ad hoc network (MANET), multicast,
overlay mesh, tree-core, efficiency, stability.

1 Introduction

Mobile ad hoc network (MANET) refers to a form of
infrastructureless network connecting mobile devices with
wireless communication capacity. Each node in MANET
behaves as a router as well as an end host, so that the con-
nection between any two nodes is a multi-hop path sup-
ported by other nodes. In MANET, the multicast support
is critical since the close cooperation among team members
is required for many MANET applications.

Multicasting in MANET faces many challenges due to
the continuous changes in network topology (mobility) and
limited channel bandwidth. Many multicast routing proto-
cols have been proposed for MANET [1, 7, 6, 2, 4, 9, 10, 11,

12, 3]. For multicast protocols, robustness and overhead are
key issues since the protocols maintain state information at
all nodes involved — both member nodes and non-member
nodes that act as routers for supporting the multicast ses-
sion.

Most multicast research for ad hoc networks has focused
on IP layer multicast protocols. Such protocols require the
cooperation of all the nodes of the network. Application
layer multicasting (overlay multicasting) is an alternative
approach to IP layer multicasting. The overlay multicast has
the following advantages: First, it does not require changes
at the network layer; second, routing complications are hid-
den; and third, intermediate nodes do not have to maintain
per group state for each multicast group. However, the use
of application layer multicast can result in the transmission
of multiple copies of multicast messages over each physical
link. This effect is especially visible when the number of
multicast group members is large.

In the overlay multicast approach for MANET, a virtual
infrastructure is built to form an overlay network on top of
the physical network. Each link in the virtual topology is
a unicast path in the physical network. The overlay net-
work implements multicast functionalities such as dynamic
membership maintenance, packet duplication and multicast
routing. AMRoute [3] is an ad hoc multicast protocol that
uses the overlay multicast approach. The protocol does not
need to track the network mobility since it is handled by
the underlying unicast protocols. Thus, it can operate seam-
lessly on multiple domains that use different unicast routing
protocols [9].

To handle the efficiency issue in overlay multicast ap-
proach, minimum cost spanning tree on the virtual mesh is
built. The cost of constructing and maintaining the tree de-
pends very much on the size of the tree. For this reason,
the overlay multicast approach works well for small groups
but the performance degrades rapidly when the group size
grows. In this paper, we propose an effective structure
called k-tree trunk, for the overlay multicast on the virtual

mesh. The selection of the value k largely depends on the
size of the spanning tree at hand. A small k is enough
practically for most of the networks and the communica-
tion groups. The k-tree trunk significantly reduces the cost
for the maintenance and provides higher stability under the
mobile environment.

The rest of the paper is organized as follows. Section 2
presents k-tree trunk, a new structure for the multicast on
virtual mesh. Section 3 gives an distributed algorithm for
finding a k-tree trunk. Section 4 provides simulation results
on the performance of multicasting on the k-tree trunk and
compares these results to those on the minimum spanning
tree. Section 5 concludes this paper.

2 A K-Tree Trunk for Overlay Multicast

As mentioned in the previous sections, overlay multicas-
ting protocol is an application layer protocol that constructs
an overlay multicast tree of logical links among the group
members. For small group this approach works well. How-
ever, as the size of the group grows, the maintenance and
update of the multicasting tree will become costly and in-
efficient. Instead of using a spanning tree, we use k-tree
trunk for multicasting on the virtual mesh. This approach is
beneficial when the multicast group is large.

A k-tree trunk of a tree is a subtree with exactly k leaves
in the tree that minimizes the total cost of the multicast com-
munication (to be defined later) among all subtrees with k
leaves. The k-tree trunk is a simple infrastructure to support
the overlay multicast in mobile ad hoc networks at applica-
tion level. A structure called k-tree core in tree networks
had been proposed and studied by Peng et al [5]. However,
in k-tree core, the object function to be minimized is differ-
ent with the k-tree trunk defined in this paper.

Let G be an edge-weighted graph with vertex set V (G).
Each edge e = (u, v) has a weight w(e), or w(u, v),
where nodes u and v are neighbors connected with edge
e. Let G′ be a connected subgraph of G, we define the
w(G′) =

∑

e∈G′ w(e). For an any node u ∈ V (G), we
define d(u,G′) = min{d(u, v)|v ∈ V (G′)} and δ(G′) =
∑

u∈V (G) d(u,G′) where d(u, v) is the distance between
nodes u and v. Then, we define γ(G′) = w(G′) + δ(G′).
In this paper, we consider γ(G′) as the object function that
we want to minimize.

In the wireless ad hoc networks, we can consider w(G′)
as an inner cost and δ(G′) as an outer cost for the overlay
multicast using G′ as infrastructure. For example, if Steiner
tree T of the virtual mesh is used then δ(T) = 0, and in
the case of stateless networks (no infrastructure), we have
G′ = {u} and w(G′) = 0. The k-tree trunk has a simpler
structure than the spanning tree (only k leaves) and the total
cost γ(G′) for the multicast is minimized among subtrees
with k leaves.

Let T be an edge-weighted tree with vertex set V (T) and
edge set E(T). Each e ∈ E(T) has a weight w(e) > 0.
Let Tk be a subtree of T with k leaves. Let F be the
set of all Tk of T . Then a k-tree trunk is a Tk that mini-
mizes γ(Tk) = w(Tk) + δ(Tk) among all Tk in F , where
w(Tk) =

∑

e∈E(Tk) w(e), δ(Tk) =
∑

u∈V (T) d(u, Tk),
and d(u, Tk) = d(u, v)|v ∈ V (Tk). A 2-tree trunk is a
path called tree trunk shortly. Finding a tree trunk is the
base for finding k-tree trunk for k > 2.

The multicast can be performed using k-trunk as follows.
If the source node is on the trunk, it broadcast the message
to all the nodes on the trunk. Then, each node on the trunk
send the message to its non-trunk nodes by unicasting. If the
source node is not on the trunk, it unicasts the message to
its trunk node first. The k-trunk can be more stable than the
tree. For example, if a non-trunk node quits from the group,
there is no affect on the connectedness of the k-trunk; but
for the tree, a node quit may separate the tree to two uncon-
nected parts.

To find a tree trunk, we first orient tree T into a rooted
tree Tr with root r. For any vertex v ∈ Tr, we denote
the parent of v as p(v), the subtree rooted at v as Tv , and
the number of vertices in Tv as |Tv|. Let a rooted trunk
P (r, l0) be a path from root r to leaf l0 which minimizes
δ(P (r, l)) + w(P (r, l)) among all paths from r to leaf l in
Tr. We show that the problem of constructing a tree trunk
in T can be reduced to the problem of constructing a rooted
trunk in a rooted tree Tr. The following lemma forms the
theoretical background for the reduction.

Lemma 1 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then P (r, l0)∩ P (l1, l2) 6= ∅
for any trunk P (l1, l2) in T .

Proof: Assume that P (r, l0) ∩ P (l1, l2) = ∅ for a trunk
P (l1, l2). Let i be the closest vertex in P (r, l0) to P (l1, l2)
and j the closest vertex in P (l1, l2) to P (r, l0). Let path
C = P (l0, i) ∪ P (i, j) ∪ P (j, l2). Since P (r, l0) is a
rooted trunk, δ(P (l0, i)) + w(P (l0, i))) ≤ δ(P (l1, i)) +
w(P (l1, i)). Since i is not a leaf, we have δ(P (l1, i)) +
w(P (l1, i)) < δ(P (l1, j)) + w(P (l1, j)). Similar, we have
δ(P (l0, j)) + w(P (l0, j)) < δ(P (l0, i)) + w(P (l0, i)).
From these equations, we get δ(P (l0, j)) + w(P (l0, j)) <
δ(P (l1, j)) + w(P (l1, j)). This implies δ(C) + w(C) <
δ(P (l1, l2)) + w(P (l1, l2)), a contradiction to the fact that
P (l1, l2)) is a trunk. Therefore, the lemma must be true. o

Theorem 1 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then a rooted trunk in rooted
tree Tl0 , a new orientation of T , is a trunk in T .

Proof: Let P (l0, l′0) be a rooted trunk in Tl0 . Assume
that P (l1, l2) is a trunk in T . From Lemma 1, P (l0, l′0) ∩
P (l1, l2) 6= ∅. Let P (i, j) = P (l0, l′0) ∩ P (l1, l2), where

i is the vertex in P (i, j) closest to vertices l0 and l1.
Since P (r, l0) is a rooted trunk, we have δ(P (l0, i)) +
w(P (l0, i)) ≤ δ(P (l1, i)) + w(P (l1, i)). Similarly,
Since P (l0, l′0) is a rooted trunk, we have δ(P (l′0, j)) +
w(P (l′0, j)) ≤ δ(P (l2, j))+w(P (l2, j)). Therefore, we get
δ(P (l0, l′0)) + w(P (l0, l′0)) ≤ δ(P (l1, l2)) + w(P (l1, l2)).
We conclude that P (l0, l′0) is a trunk in T . o

Next, we introduce trunk partition of a rooted tree Tr.
A trunk partition of Tr, denoted as Γ(Tr), can be defined
recursively as follows. For a node v ∈ Tr, let v1, . . . , vq be
the children of v. Let Pvi,li be a rooted trunk of Tvi . We
define the trunk partition of Tv , Γ(Tv) as follows:

Γ(Tv) = ∪qi=1({Pv,li} ∪ Γ(Tvi − {Pvi,li})

. From the definition, Γ(Tv) can be found if rooted trunk
of node u, for all u ∈ Tv , has been computed. It can be
verified easily that trunk partition of Tr is a partition of T
into edge-disjoint paths Pi, 1 ≤ i ≤ m. That is,

Γ(Tr) = {Pi, 1 ≤ i ≤ m}, ∪mi=1 Pi = T

Theorem 2 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Let Γ(Tl0) = ∪mi=1{Pi},
where γ(Pi) ≥ γ(Pj) if i ≥ j, be a trunk partition of the
rooted tree Tl0 , a new orientation of T . Then, Tk = ∪k−1

i=1 Pi
is a k-tree trunk in T .

Proof: We prove the theorem by induction on k. For k = 2,
from Theorem 1, the theorem is true. Let P1 = P (l0, l1)
and Pi = P (vi, li) for i > 1. Let T ′k be a k-tree trunk,
k > 2, in T . By the induction assumption, for any subtree
T ′k−1 of T ′k with k−1 leaves, we have γ(Tk−1) ≥ γ(T ′k−1).
Without loss of generality, we can assume that li, 0 ≤ i ≤
k − 2, are the leaves of T ′k. Let ls 6= li, 0 ≤ i ≤ k − 2,
be the leaf in T ′k. Assume that P (ls, w) be the path that is
edge-disjoint with Tk−1. From the definition of trunk parti-
tion, we have γ(P (lk−1, vk−1)) ≤ γ(P (ls, w)). Therefore,
γ(Tk) ≤ γ(T ′k). We conclude that Tk is a k-tree trunk in T .
o

In the next section, we will introduce an efficient dis-
tributed algorithm that can perform tree orientation, finding
rooted trunk, and a trunk partition altogether. The algorithm
uses only local information and communication is done by
asynchronous message passing.

3 A Distributed Algorithm for Finding a K-
Tree Trunk

We propose a distributed algorithm for finding a k-tree
trunk of a tree T in this section. The algorithm is based on
branch-cut operation.

For a given root node r, the branch-cut operation works
inward from leaves (6= r). The branch-cut operation first
identifies candidates. A node u 6= r is a candidate if the

following conditions are satisfied: (1) u is a nonleaf node;
and (2) if r 6∈ N(u) exactly one nonleaf v ∈ N(u), other-
wise, N(u)−{r} are all leaves. The root r is a candidate if
all its neighbors are leaves. If u becomes a candidate then
branch-cut is performed on u; the neighbors of u that are
leaves are cut-off from the tree and u becomes a leaf (for
tree orientation, we set all edges connecting u and its leaf
neighbors the direction toward u). The branch B(u) is a
subtree in T that includes all edges oriented toward u or its
descendants through branch-cut. Figure 1 depicts a tree Tr
that contains a candidate u. Note that w is not a candidate
due to r ∈ N(w), although it has only one nonleaf neighbor
v.

Candidate
B(u)

x

z

u vy w

r

s

root

Figure 1. Candidates in tree Tr

Through branch-cut operation, the rooted trunk and
trunk partition of the branch B(u) with root u are calcu-
lated and saved in u. Since all candidates that are not root
r calculate the disjoint local trunks for different branches
at the same time, the algorithm inherits natural parallelism.
In a distributed environment, global clock and global infor-
mation are not available, so branch-cut operation should be
done asynchronously, and based on the local information
only.

To find the rooted trunk based on branch-cut, if we use
the formula w(P) + δ(P) directly, δ(l), for all leaves l of
tree T , should be calculated first. However, calculating the
value of δ(l) requires global information. To overcome this
problem, we define cost saving that needs local information
only. The cost saving of a path from a leaf l to node v,
denoted as Cs(P (l, v)), is defined as follows:

Cs(P (l, v)) = δ(v)− δ(P (l, v))− w(P (l, v)) (1)

Now, from the definition of rooted trunk, to find a rooted
trunk in branch B(u) equals to find a path P (l, u) in B(u)
such that Cs(P (l, u)) is maximized. It is the key in the de-
sign of distributed algorithm for finding rooted trunk based
on branch-cut in which Cs(P (l, u)) can be computed us-
ing local information only. The formula for computing cost
saving while extending path from v to u is

Cs(P (l, u)) = Cs(P (l, v)) + (|B(u)| − 1)×w(u, v) (2)

where v is a child of u and v ∈ P (l, u)).

The cost saving of a local rooted trunk in B(u), denoted
as Cs(u) is defined as

Cs(u) = max
l∈B(u)

Cs(P (l, u)) (3)

0

0

0

0

0

3

2

0

0

0

0

0

2

0

0

0

a

b

c

d

e

f

g

r
x

t

m

q

s

y

z

n p

8

Figure 2. Calculation of cost saving during
branch-cut

As shown in Figure 2, given tree T and root r, four
nodes a, b, c, and d are identified as candidates. We per-
form branch-cut and these four nodes become leaves with
Cs(a) = Cs(b) = Cs(c) = Cs(d) = 0. Next, nodes e, g,
and f are identified as candidates. We perform branch-cut
and calculate the cost savings Cs(e) = 0 + (4−1)×1 = 3,
and Cs(f) = Cs(g) = 2 in parallel by using Equations 2
and 3. Finally, since all three neighbors of node r are
leaves, we perform branch-cut at r and calculate three cost
saving from three branches. They are Cs(P (x, r)) = 8,
Cs(P (s, r)) = 5, and Cs(P (q, r)) = 7, respectively.
Therefore P (x, r) is selected as rooted trunk.

Algorithm 1: Finding K Tree Trunk
Input: A weighted tree T and k
Output: A k-tree trunk Tk
begin

1. Orient tree T into a rooted tree Tr
with an arbitrary vertex r;

2. Construct a rooted trunk P (r, l0) in Tr;
3. Re-orient T into Tl0 ;
4. Construct a trunk partition of Tl0 , Γ(Tl0);
5. Find the path Pk−1 such that Cs(Pk−1) is

the (k − 1)th largest among the paths in Γ(Tl0);
6. Return Tk = ∪k−1

i=1 Pi, where Pi ∈ Γ(Tl0) and
Cs(Pi) ≥ Cs(Pj) if i < j

end

The algorithm for finding a k-tree trunk is given in Al-
gorithm 1. Algorithm 2 is a procedure for finding a rooted
trunk and a trunk partition (and tree orientation) in which
we use the local information to compute the following four
variables in each node u:

Algorithm 2: Trunk Partition
Input: A weighted tree T and a root r
Output: A rooted trunk and a trunk partition of Tr
begin
u = my node id;
u.size = 1;
u.saving = 0;
u.path = {u};
u.parti = ∅;
n = degree(u);
L = N(u); /* N(u) is the set of neighbor nodes of u */
if (n = 1) and (u 6= r) /* a leaf */

send Message(u.size, u.saving, u.path, u.parti)
to v ∈ L;

exit();
else

while (true)
receive Message (v.size, v.saving, v.path, v.parti)

from v ∈ L;
n = n− 1;
L = L− {v};
u.size = u.size+ v.size;
if (u.saving < v.saving+ (v.size−1)×w((u : v)))
u.saving = v.saving+ (v.size− 1)×w((v : u));
u.path = u.path ∪ (u : v);
u.parti = u.parti ∪ v.parti∪
{v.path ∪ (u : v)} − {v.path};

endif
if (n = 1) and (u 6= r) /* branch-cut */

send Message(u.size, u.saving, u.path, u.parti)
to v ∈ L;

exit();
endif /* my node id finish */
if (n = 0) /* u is root */

return (u.path, u.parti);
exit(); /* Trunk partition found */

endif
endwhile

endif
end

1. The number of nodes in B(u), denoted as u.size.
2. The cost saving Cs(u), denoted as u.saving.
3. The local rooted trunk in B(u), denoted as u.path

(Cs(u.path) = Cs(u)).
4. The trunk partition of branch B(u), denoted as
u.parti.

Theorem 3 Algorithm 2 finds a rooted trunk and a trunk
partition of T with root r in Tr in O(d) time, where d is
the diameter of T , assuming that the degree of node v ∈ T ,
deg(v) = O(1).

Proof: From the initial values assigned to leaves and the
iteratively extending formula 2, it can be verified easily that

the u.saving = Cs(u). Next, When node u 6= r becomes
a leaf (|L| = n = 1), it sends a message to the only node v
left in L that is either a nonleaf node or the root and exits.
Therefore, the message from u to v is sent only once and no
message will be sent from v to u. That is, there is no conflict
during asynchronous communication. Since the message is
sent from u (u is cut-off) only if u 6= r, root r will receive
message from its neighbor only and the edges are oriented
from its neighbors toward r. Therefore, root r must be the
last node remained during the branch-cut process.

Next, when node u sends message to node v, u is cut-
off and the trunk partition of Tu should be extended to
v. Therefore, the algorithm updates the current v.parti by
adding u.parti ∪ {u.path ∪ (u : v)} − {u.path}. It can
be seen easily that when v 6= r becomes a leaf, v.parti will
be the trunk partition of Tv . When r becomes a single node
(n = 0), r.parti is a trunk partition of Tr. The running
time of the algorithm is O(h) = O(d), h is the height of the
rooted tree Tr, since computing and communication time
for each node u is a constant assuming that deg(u) = O(1).
o

Next, we shows in Theorem 4 that finding a k-tree trunk
can be done efficiently in a distributed environment using
local information only.

Theorem 4 Given a weighted tree T , there exists a dis-
tributed algorithm that finds a k-tree trunk in T in O(d)
time, assuming that the degree of node v ∈ T , deg(v) =
O(1) and local computations take O(1) time.

Proof: From Theorems 1 and 2, we know that algorithm 1
finds a trunk and a k-tree trunk correctly. From Theorem 3,
steps 1 - 4 of algorithm 1 can be done efficeintly in O(d)
time. Next, steps 5 - 6 of Algorithm 1 that find the (k−1)th
largest number in Pi, 1 ≤ i ≤ m, and the union of the
largest k− 1 paths in the trunk partition can be done locally
at root node. Therefore, the running time of Algorithm 1 is
O(d+ n). o

4 Performance Analysis and Simulations

The network for the performance simulation is config-
ured as below. There are 200 nodes randomly roaming
within a 2000m × 1500m area. The radio transmission
range of each node is set to be 350m, 450m, and 550m.
The group size is chosen to be 10 to 100, stepped by 10.
Each configuration runs 100 trials.

Figure 3 shows the trunk size — the number of nodes
of trunk. The trunk size is relatively small compared to the
multicast group size. Also, increasing the radio transmis-
sion range reduces the trunk size.

Figure 4 shows the message delivery cost. The message
delivery cost here is simply defined as the sum of physical
hop length of virtual links of the trunk when a message is

2

6

10

14

18

22

10 20 30 40 50 60 70 80 90 100

Tr
un

k
si

ze

Group size

r350m
r450m
r550m

Figure 3. Average trunk size

multicasted to all the group members. Increasing the radio
transmission range will decrease the cost but the effect is
not obvious.

10
20
30
40
50
60
70
80
90

100
110
120
130
140

10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

de
liv

er
y

co
st

Group size

r=350m
r=450m
r=550m

Figure 4. Average cost

Table 1 lists the message delivery costs of trunk, 3-tree
trunk, 4-tree trunk, 5-tree trunk, and AMRoute with the ra-
dio transmission range of 350m. The table also lists the cost
for stateless transformation in which the message is sent to
every member individually by unicast routing.

Figure 5 depicts the costs listed in the table. Trunk struc-
ture maintains fewer nodes than AMRoute. By simply in-
creasing k, the message delivery cost is closed to the opti-
mal cost of tree. From our simulation, we conclude that the
k-tree trunk with k = 3 or 4 provides better maintenance-
cost/performance.

The virtual trunk remains static even though the un-
derlying physical topology is changing. We also inves-
tigated the mobility effect on the message delivery cost.
The movement of each node follows the random waypoint

Table 1. Average cost

#Mem Stateless Trunk Tree 3-Trunk 4-Trunk 5-Trunk

10 30.14 15.55 14.95 14.91 14.66 14.43
20 63.69 27.19 24.42 25.18 24.58 24.43
30 101.0 39.24 32.90 34.97 33.42 33.07
40 135.2 50.95 40.82 44.82 42.48 41.44
50 167.6 64.94 49.93 56.04 52.89 51.30
60 192.3 78.15 59.50 68.40 64.10 61.86
70 231.1 93.56 69.28 79.98 75.08 72.52
80 260.2 106.0 79.15 92.70 86.28 83.06
90 308.6 120.5 89.11 103.9 97.06 93.82
100 333.9 134.2 99.09 116.6 108.7 104.8

10
20
30
40
50
60
70
80
90

100
110
120
130
140

10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

de
liv

er
y

co
st

Group size

2-Trunk
3-Trunk
4-Trunk
5-Trunk

AMRoute

Figure 5. Average cost

20
40
60
80

100
120
140
160
180

0 100 200 300 400 500

M
es

sa
ge

de
liv

er
y

co
st

s

Elapsed time (second)

Trunk-m50
AMRoute-m50

Figure 6. Cost with mobility

model [8]: Each node selects a destination location ran-
domly and moves straight toward the destination with a con-
stant speed which is uniformly distributed over [0,20] me-
ters/second. After arrival, the node pauses for 10 second
and then moves to another location, and so on.

Figure 6 shows the time-line of the costs of the AM-
Route and the trunk for multicast group size 50 at the ra-
dio transmission range of 350m. As the member node
moves, the message delivery costs of both the AMRoute
and trunk increase. In practice, the trunk structure must be
re-constructed periodically, like the AMRoute does.

5 Concluding Remarks

A new infrastructure called k-tree trunk for overlay mul-
ticasting on mobile ad hoc network was proposed and an ef-
ficient distributed algorithm for finding a k-tree trunk were
given. Then we evaluated its performance through simula-
tions. Our future work includes the investigating more pre-
cisely the influences of using the new structure on the per-
formance under more realistic environments or larger net-
works as well as multicast groups. Other applications for
k-tree trunk will also be a possible direction for future work.

References

[1] K. Chen and K. Nahrstedt. Effective location-guided tree
construction algorithm for small group multicast in manet.
In Proc. of IEEE INFOCOM’02, June 2002.

[2] D. Janotti et al. Overcast: reliable multicasting with an over-
lay network. In Proc. of the 4th Symposium on Operating
System Design and Implementation, Oct. 2000.

[3] J. Xie et al. Amroute: ad hoc multicast routing protocol.
ACM Mobile Networks and Applications, 7(6), Dec. 2002.

[4] S. J. Lee et al. On-demand multicast routing protocol in
multihop wireless mobile networks. ACM Mobile Networks
and Applications, 7(6), Dec. 2002.

[5] S. Peng et al. Algorithms for a core and k-tree core of a tree.
Journal of Algorithms, 15:143–159, 1993.

[6] M. Ge, S. V. Krishnamurthy, and M. Faloutsos. Overlay
multicasting for ad hoc networks. In Proc. of the Third An-
nual Mediterranean Ad Hoc Networking Workshop (Med-
HocNet 2004), pages 131–143, June 2004.

[7] C. Gui and P. Mahapatra. Efficient overlay multicast for mo-
bile ad hoc networks. In Proc. of IEEE WCNC2003, March
2003.

[8] David B. Johnson and David A. Maltz. Dynamic source
routing in ad hoc wireless networks. Kluwer Academic Pub-
lishers, 1996.

[9] S. J. Lee and W. Su. Performance comparison study of ad
hoc wireless multicast protocols. In Proc. of IEEE INFO-
COM’00, Mar. 2000.

[10] R. Novak, J. Ruge, and G. Kandus. Steiner tree based dis-
tributed multicast routing in networks. Steiner Trees in In-
dustries, 8(5):1–25, 2000.

[11] E. Royer and C. E. Perkins. Multicast operations of the ad-
hoc on-demand distance vector routing protocol. In Proc. of
ACM MOBICOM’99, Aug. 1999.

[12] C. W. Wu and Y. C. Tay. Amris: a multicast protocol for ad
hoc wireless networks. In Proc. of IEEE NILCOM’99, Nov.
1999.

