
International Symposium on Parallel Architectures, Algorithms and Networks, Manila, Philippines, May 2002, pp.165–170

Efficient Communication in Metacube: A New Interconnection Network

Yamin Li and Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin, speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract

This paper introduces a new interconnection network for
very large parallel computers called metacube (MC). An
MC network has a 2-level cube structure. An MC(k,m)
network connects2m2k+k nodes with m+ k links per node,
where k is the dimension of a high-level cube and m is the
dimension of low-level cubes (clusters). An MC network
is a symmetric network with short diameter, easy and effi-
cient routing similar to that of hypercubes. However, an MC
network can connect more than one hundred of millions of
nodes with only 6 links per node. Design of efficient rout-
ing algorithms for collective communications is the key is-
sue for any interconnection network. In this paper, we also
show that total exchange (all-to-all personalized communi-
cation) can be done efficiently in metacube.

1. Introduction

An n-dimensional hypercube, orn-cube, contains 2n

nodes and hasn edges per node. If uniquen-bit binary ad-
dresses are assigned to the nodes of ann-cube, then an edge
connects two nodes if and only if their binary addresses dif-
fer in a single bit. Because of its elegant topological prop-
erties and the ability to emulate a wide variety of other fre-
quently used networks, the hypercube has been one of the
most popular interconnection networks for parallel com-
puter systems. However, in the hypercube, the number of
edges per node increases logarithmically as the total num-
ber of nodes increases. If one node has one processor, the
total number of processors in a parallel system with ann-
cube connection is restricted to several hundreds. We have
found an interconnection network which will link millions
of nodes with only a small number of links per node while
retaining the hypercube’s topological properties.

Several variations of the hypercube have been proposed
in the literature. Some variations focused on reduction of
the hypercube diameter, for example the folded hypercube

[1] and crossed cube [3]; some focused on reduction of
the number of edges of the hypercube, for example cube-
connected cycles [13] and reduced hypercube [15]; and
some focused on both, as in the hierarchical cubic network
[4]. One major property of the hypercube is: there exists
an edge between two nodes only if their binary addresses
differ in a single bit. This property is at the core of many al-
gorithmic designs for efficient routing and communication
in hypercubes. In this paper, we refer to it as the hyper-
cube’skey property. Generally, variations of the hypercube
that reduce the diameter, e.g. the crossed cube and hierar-
chical cubic network, will not satisfy this key property. An
alternative to the Star graph, called Macro-Star [14], also
reduces the number of edges, but the routing algorithm on
a Macro-Star network is much more complex than that on a
hypercube.

Our goal is to accommodate as many nodes as possi-
ble with a fixed number of links per node, and at the same
time, keep the main structures and desirable properties of
the hypercube such as the key property, small diameter, ef-
ficient routing, broadcasting, and total exchange etc. In this
paper, we propose a new interconnection network, called
metacube(MC) and describe an optimal routing algorithm
for total exchange in an MC. The MC shares many desir-
able properties of the hypercube and can be used as an in-
terconnection network for a parallel computer system of al-
most unlimited size with just a small number of links per
node. For example, an MC(3,3) with 6 links per node has
227 = 134,217,728 nodes.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the MC network. Section 3 gives a total
exchange algorithm on an MC and analyzes its time com-
plexity. Finally, Section 4 concludes the paper and presents
some further research issues on metacubes.

2. Metacube interconnection network

There are two parameters in an MC:k and m. An
MC(k,m) contains 2k classes. Each class contains 2m(2k−1)

165



00
0000
0000

00
0000
0001

00
0000
0010

00
0000
0011

01
0000
0000

01
0000
0100

01
0000
1000

00
0000
1100

00
1111
1100

00
1111
1101

00
1111
1110

00
1111
1111

01
1111
0011

01
1111
0111

01
1111
1011

01
1111
1111

10
0000
0000

10
0001
0000

10
0010
0000

10
0011
0000

11
0000
0000

11
0100
0000

11
1000
0000

11
1100
0000

10
1100
1111

10
1101
1111

10
1110
1111

10
1111
1111

11
0011
1111

11
0111
1111

11
1011
1111

11
1111
1111

10
0000
0001

10
0001
0001

10
0010
0001

10
0011
0001

11
0000
0001

11
0100
0001

11
1000
0001

11
1100
0001

10
0000
0010

10
0001
0010

10
0010
0010

10
0011
0010

11
0000
0010

11
0100
0010

11
1000
0010

11
1100
0010

10
0000
0011

10
0001
0011

10
0010
0011

10
0011
0011

11
0000
0011

11
0100
0011

11
1000
0011

11
1100
0011

00
0000
0100

00
0000
0101

00
0000
0110

00
0000
0111

01
0000
0001

01
0000
0101

01
0000
1001

01
0000
1101

00
0000
1000

00
0000
1001

00
0000
1010

00
0000
1011

01
0000
0010

01
0000
0110

01
0000
1010

01
0000
1110

00
0000
1100

00
0000
1101

00
0000
1110

00
0000
1111

01
0000
0011

01
0000
0111

01
0000
1011

01
0000
1111

class 0 class 1

class 2 class 3

Figure 1. A metacube MC(2,2)

clustersand each cluster contains 2m nodes. Therefore, an
MC(k,m) containsp = 2m2k+k nodes and the number of bi-
nary bits of the node address isn = m2k + k. The value of
k affects strongly the growth rate of the size of the network.
An MC(1,m) containing 22m+1 nodes is called adual-
cube [9] [10]. Similarly, an MC(2,m), an MC(3,m), and
an MC(4,m) containing 24m+2, 28m+3, and 216m+4 nodes,
are calledquad-cube, oct-cube, andhex-cube, respectively.
Since an MC(3,3) contains 227 nodes, the oct-cube is suf-
ficient to construct practically parallel computers of very
large size. The hex-cube is of theoretical interest only. No-
tice that an MC(0,m) is anm-cube.

In the following discussion, we use (c,m[2k −
1], . . . ,m[1],m[0]) to denote a node address. It has (2k + 1)
fields. c, located in the 2kth (leftmost) field position, is
the k-bit class_id, which defines theclassof a node;m[c],

located in thecth field position, is them-bit node_idand
(m[2k−1], . . ., m[c+1],m[c−1], . . . ,m[0]) is them(2k−1)-
bit cluster_id. For the different value ofc, the field po-
sition of thenode_idin the address is different. The ad-
dress of a specific node, nodes for instance, is denoted with
s= (cs,ms[2k−1], . . . ,ms[1],ms[0]).

An MC(k,m) is constructed in the following manner.
Within a cluster,m links per node form anm-cube. We
call thesem links cube-edges. The links that connect nodes
in different clusters are defined as following. Two nodes
whose addresses differ only in one bit within thek-bit class
field are connected by a link. There arek such links per
node, we call thesek links cross-edges. Therefore, a node
in an MC(k,m) hasm+k links: m links construct alow-level
m-cube andk links construct ahigh-level k-cube.

The addresses of two nodes connected by a cross-

166



edge differ only in one bit within the 2kth field (k-bit
class_id c) and there is no direct connection among the
clusters of the same class. The addresses of two nodes
connected by a cube-edge differ only in one bit within
the cth field (m-bit node_id m[c]). For example, the
neighbors in the cluster of the node (01,111,101,110,000)
(class_id c = 01 and node_id m[c] = 110) in an
MC(2,3) are (01,111,101,111,000), (01,111,101,100,000)
and (01,111,101,010,000). The two neighbors in thek-cube
are (00,111,101,110,000) and (11,111,101,110,000).

Figure 1 shows the structure of an MC(2,2), where the
clusters in the same square are of the same class. In Fig-
ure 1, there are 22(22−1) = 64 clusters in each class and
each cluster is a 2-cube. The figure shows only 4 high-level
cubes, each of these contains a distinct node in cluster 0 of
class 0.

The ratio of the total number of links in a hypercube to
the total number of links in an MC is equal ton/(m+ k),
wheren = m2k + k. For example, fork = 2 andm = 3
(n= 14), each of the two networks contains 16,384 nodes; a
hypercube contains 214×14/2= 114,688 links, whereas an
MC contains 214× (3+2)/2= 40,960 links. The reduction
in the total number of links for this example is 73,728 links,
or about 64%.

3. Total exchange algorithm

3.1. Communication model and total exchange

Design of efficient routing algorithms for collective com-
munications is the key issue in message-passing parallel
computers or networks [2] [5] [8] [11]. Collective com-
munications are required in load balancing, event synchro-
nization and data exchange. Based on the number of send-
ing and receiving processors, these communications can be
classified into one-to-many, one-to-all, many-to-many and
all-to-all. The nature of the messages to be sent can be
classified into personalized or non-personalized (multicast
or broadcast). The all-to-all personalized communication,
called total exchange sometimes, is at the heart of numeri-
cal applications.

An important metric used to evaluate the efficiency of
communications iscommunication latencyor transmission
time. The transmission time depends on many factors such
as contentions, switching techniques, network topologies
etc. Therefore, we first define the communication model
used in this paper.

We assume that the communication links are bidirec-
tional, that is, two directly-connected processors can send
messages to each other simultaneously. We also assume the
processor-bounded model (one-port model) in which each
node can access the network through a single input port and

a single output port at a time. The port model of a net-
work system refers to the number of internal channels at
each node. In order to reduce the complexity of communi-
cation hardware, many systems support one-port communi-
cation architectures. We also assume the linear cost model
in which the transfer time for a message is linearly propor-
tional to the length of the message.

We usecut-throughswitching technique [6] [7] to per-
form the total exchange. In cut-through switching, each
message is serialized into a sequence of pieces and is sent
in a pipeline fashion. The router can start forwarding the
header and the following data bytes as soon as routing de-
cisions have been made and the output buffer is free. For
long messages, the pipelining effect of cut-through switch-
ing reduces the effect of path length on network. The pre-
dominantwormholeswitching [12] is just a special form of
cut-through. With cut-through switching, the transmission
time for a message of lengthg to be sent to a node of dis-
tanced is ts+gtw +dth, wherets is startup latency, the time
required for the system to handle the message at the source
and destination nodes,tw is the per-word transfer time (1/tw
is the bandwidth of the communication links), andth is the
per-hop time, the time to switch an intermediate node.

In total exchange, each node sends a distinct message to
every other node. The total number of messages isp(p−1)
wherep is the number of nodes. Because the metacube has
much smaller number of links compared to the traditional
hypercube, we must find a proper way to perform total ex-
change in metacube efficiently. The two key points are

1. to determine the order of destination nodes for a source
node so that every pair of source and destination nodes
has the same path length in every sending step, thus
every source node spends the same time to send a mes-
sage to a destination node; and

2. to perform the conflict-free routing.

In the following, we focus on an MC(k,m) with k= 2 (quad-
cube). The idea should also work for an MC(k,m) with
k≥ 3. We describe an innovative policy for arranging the
order of thep− 1 destination nodes from a given source
node, and an optimal routing strategy for total exchange in
an MC(2,m) in the following subsections.

3.2. An efficient algorithm for total exchange

We adopt the following strategy: each node sends one
message to its destination at onecommunication step. There
are totally (p−1) communication steps. Our goals are that

1. each node sends a distinct message to every other node
through a shortest path,

2. all thep nodes send messages simultaneously and
3. all the paths do not conflict with each other at any given

time.

167



We give an efficient algorithm (Algorithm 1) which deter-
mines the order of the (p− 1) destination nodes for the
source nodes, and then calls the routing algorithm to be
specified in the next subsection. All the nodes execute the
same algorithm simultaneously. The variables is the ad-
dress of the node, andMs,∗ is the set of messages to be sent
out froms. We use C/Java style to present our algorithms.

Algorithm 1 (TotalExchange (m, s, Ms,∗))

1. begin /* Ms,d is the message from node s to node d */
2. for c[4] = 0 to 3 do /* each class_id */
3. for c[3] = 0 to 2m−1 do
4. for c[2] = 0 to 2m−1 do
5. for c[1] = 0 to 2m−1 do
6. for c[0] = 0 to 2m−1 do /* each node_id */
7. x = c[4]⊕cs; /* cs is the class_id of s */
8. d = (c[4], c[3⊕x], c[2⊕x],

c[1⊕x], c[0⊕x])⊕s;
9. if (d 6= s) Routing(m, s, d, Ms,d);

10. end

According to the format of a node address for an MC(2,
m), we use five “for” loops to generatep destination ad-
dresses. Variablec[4] is a class_id, c[0] is a node_idand
c[1], c[2], c[3] together form acluster_id. The operator
⊕ is a bitwise exclusive-OR logical operation, andcs is
the class_idof s. Considers= 0 (cs = 0), the destination
noded = (0, c[3], c[2], c[1], c[0]) if c[4] = 0. That is,c[i]
(0≤ i ≤ 3) appears in the field positioni of d. For the dif-
ferent value ofc[4] (class_id), c[0] (node_id) should appear
in different field position. The rule for the field position of
c[i] (0 ≤ i ≤ 3) is thatc[i] should be in the field position
(i⊕c[4]). From the algorithm, fors= 0, we have

c[4] = 0 ⇒ d = (0, c[3], c[2], c[1], c[0]);
c[4] = 1 ⇒ d = (1, c[2], c[3], c[0], c[1]);
c[4] = 2 ⇒ d = (2, c[1], c[0], c[3], c[2]);
c[4] = 3 ⇒ d = (3, c[0], c[1], c[2], c[3]).

For the cases ofs 6= 0, we get the destination noded =
(c[4], c[3⊕ x], c[2⊕ x], c[1⊕ x], c[0⊕ x])⊕ s, wherex =
c[4]⊕ cs is theclass_idof d. The operation⊕x makesc[i]
(0≤ i ≤ 3) located in the proper field position and the oper-
ation⊕s makes every pair of (s,d) symmetric with everys.
This algorithm ensures that

1. it generates every other node address exactly once and

2. every pair of (s,d) generated by the algorithm at the
same step has the same distance betweensandd in an
MC(2,m).

Then the messageMs,d is routed froms to d if d 6= s. The
routing algorithm is given in the next subsection.

3.3. A conflict-free routing algorithm

In the total exchange, all nodes send messages simulta-
neously, each path must not conflict with every other path
at any given time. In this subsection, we present an optimal
routing algorithm that generates conflict-free shortest path
from s to d.

In a hypercube, two nodess andd whose addresses dif-
fer in l bits are connected by a shortest path of lengthl .
l is calledHamming distancebetweens andd that equals
the number of non-zero bits in the binary representation of
s⊕d. A message traveling froms to d must pass through at
leastl links. There should be more than one solution for a
message traveling froms to d. Through this paper, we fol-
low theascending routingstrategy, by which the least sig-
nificant non-zero bit ofs⊕d is chosen as the first dimension
for routing and so on.

In a metacube, onlymcube-edges can be used for routing
within a cluster. That is, the routing can take place incth
field (m[c]) for a cluster of classc. Routing within a cluster
can be done as a similar manner as a hypercube does. We
list it below (Algorithm 2), whereMs,d is the message from
s to d, diff = d⊕ s, current is a node the message arrived
andc is theclass_id of the cluster. Notice thatcurrent is a
global variable.

Algorithm 2 (routingInCluster (m, c, diff, Ms,d))

1. begin /* routing within a cluster of class c */
2. for i = 0 to m−1 do
3. go= mdiff[c] & 2 i ;
4. if (go 6= 0)
5. mcurrent[c] = mcurrent[c]⊕go;
6. sendMs,d to current;
7. end

This algorithm is just for routing within a cluster of class
c. Routing froms to d needs to go along cross-edge(s) if
s andd are in different clusters. We therefore must deter-
mine a class sequence along which a path froms andd can
be built. We definetype of a destination noded to indi-
cate the difference between the addresses ofs andd. The
definition of type simplifies the construction of a shortest
path for class sequence fromcs to cd, called classPath. The
classPath is the key for the conflict-free routing in total ex-
change. If everyms[i] = md[i], for 0≤ i ≤ 3, i 6= cs and
i 6= cd, let type= 0. In such a case, a path can be obtained
by routing within the cluster ofs, going along cross-edge(s)
in high-levelk-cube to the cluster ofd, and routing within
the cluster ofd. That is, no cluster other than the clusters
of sandd needs to be routed inside. Otherwise, a cluster of
classi must be routed inside. Based on the appearance of
suchi, typemay be 1, 2, or 3.

Except for the field positions 0 anddest, if there is only

168



one fieldi in whichms[i] 6= md[i], thentypeis 1 or 2 depend
on the field position ofi; otherwise,type= 3 (the case of
dest= 0 is special in whichtype= 3 as long asms[3] 6=
md[3]). For anys andd, the procedure for gettingtype is
shown in Algorithm 3. The input parameters ares andd
and thetypewill be returned. We usedest= cd⊕ cs. The
⊕cs is also applied to the field position for each field.

Algorithm 3 (getType (s, d))

1. begin
2. type= 0;
3. switch (dest= cd⊕cs)
4. case 0: /* s and d are of the same class */
5. if (md[2⊕cs] 6= ms[2⊕cs]) type= 2;
6. if (md[1⊕cs] 6= ms[1⊕cs]) type= type+1;
7. if (md[3⊕cs] 6= ms[3⊕cs]) type= 3; break;
8. case 1: /* cs and cd differ in dimension 0 */
9. if (md[3⊕cs] 6= ms[3⊕cs]) type= 2;

10. if (md[2⊕cs] 6= ms[2⊕cs]) type= type+1; break;
11. case 2: /* cs and cd differ in dimension 1 */
12. if (md[3⊕cs] 6= ms[3⊕cs]) type= 2;
13. if (md[1⊕cs] 6= ms[1⊕cs]) type= type+1; break;
14. case 3: /* cs and cd differ in dimensions 0 & 1 */
15. if (md[2⊕cs] 6= ms[2⊕cs]) type= 2;
16. if (md[1⊕cs] 6= ms[1⊕cs]) type= type+1; break;
17. return (type);
18. end

In order to avoid conflicts, we construct the routing paths
based on a set of classPaths which is generated with the
typesand thedestsof destination noded. The classPath by-
passes some classes based on the information carried in the
value oftype. The routing path froms to d in our routing
algorithm which is constructed from classPath, is a short-
est path. Here, we show the table of classPaths including
the lengths of the classPaths (Table 1) for the nodes of class
0 to route fromcs (= 0) to cd (= dest) in the high-level
k-cube along cross-edges. For each pair of(dest, type), the
sequence of numbers in the table indicates the classPath and
its length: the first number is the length of the classPath, and
the rest is the classPath. For example, in the case ofdest= 1
andtype= 1, the table shows (3, 2, 3, 1): the path length is
3, the class path is (0,2,3,1) since a cluster of class 2 must
be routed inside, where 0 is theclass_idof s and 1 is the
class_idof d. Notice that the class of the source node was
not stored in the table. In our routing algorithm, this num-
ber sequence is accessed with an indexnext (= 0,1, . . .):
next= 0 indicates the first number in the sequence (length),
next= 1 indicates the second number (next class tos) and so
on. Therefore, classPath[dest,type,0] is the classPath length,
and classPath[dest,type,next] for next= 1,2, . . . is a class in
the class sequence of classPath.

The classPath table listed in Table 1 is for the source
nodes of class 0. A source node located in a different class
may need a different routing table. Here we adopt anode

Table 1. List of classPaths with path lengths

type 0 1 2 3
dest= 0 (0) (2, 1, 0) (2, 2, 0) (4, 1, 3, 2, 0)
dest= 1 (1, 1) (3, 2, 3, 1) (3, 2, 3, 1) (3, 2, 3, 1)
dest= 2 (1, 2) (3, 1, 3, 2) (3, 1, 3, 2) (3, 1, 3, 2)
dest= 3 (2, 1, 3) (2, 1, 3) (2, 1, 3) (4, 1, 3, 2, 3)

renamingtechnique so that one such table can be used for
any node. The node renaming technique is relied on the
fact of y⊕ x⊕ x = y for any x. For a source nodes and a
destination noded, if cs andcd are the same, then the first
line (dest= 0) in Table 1 will be accessed with the index
dest= cd⊕ cs = 0. The real class for the next cross-edge
traveling can be gotten byci ⊕ cs, whereci is the class ob-
tained from the table. The conflict-free shortest path rout-
ing algorithm for the total exchange is given in Algorithm 4
which is invoked by Algorithm 1.

Algorithm 4 (Routing (m, s, d, Ms,d))

1. begin /* Ms,d is the message from node s to node d */
2. diff = d⊕s; /* different address bits of d and s */
3. current= s; /* current node= s */
4. dest= cd⊕cs; /* cd (cs) is class_id of d (s) */
5. type= getType (s, d); /* call Algorithm 3 */
6. next= 0;
7. RoutingInCluster (m, ccurrent, diff, Ms,d);
8. while (next< classPath[dest, type,0])
9. next= next+1;

10. ccurrent = classPath[dest, type,next]⊕cs;
11. sendMs,d to current;
12. if (current 6= d)

RoutingInCluster (m, ccurrent, diff, Ms,d);
13. end

The algorithm first routes in the source cluster (line 7,
calling Algorithm 2), then goes to a cluster along a cross-
edge based on the classPath table (lines 10-11) and routes in
the cluster (line 12) if necessary. The operations described
in lines 9–12 repeat until reaching the destination node.

All the algorithms (procedures) needed for total ex-
change were described. We analyze the communication
time in the next subsection.

3.4. Time analysis of total exchange algorithm

As mentioned in subsection 3.1, we useT = ts+gtw+dth
to evaluate the total exchange time for metacube. For then-
cube’s case, let the number of nodesp = 2n. Because there
are
(n

i

)

nodes at distancei from the source node, the time it
takes to send (p−1) messages to all the other nodes is

TC =
n

∑
i=1

(ts+gtw+ ith)
(

n
i

)

=(p−1)(ts+gtw)+ p(
1
2

logp)th.

169



In a metacube, the path length froms to d is longer than
that in a hypercube. That is, the time an MC(2,m) takes for
the total exchange,TM, will has a larger coefficient ofth.
In order to getTM, we calculate the extra distance a node
takes to send messages to all the other nodes. For example,
when type= 1, the metacube takes 2, 3, 3 and 2 steps in
routing on the high-level 2-cube fordest= 0,1,2,and 3, re-
spectively, while the hypercube takes 0, 1, 1 and 2 steps. We
subtract these hypercube step values from the correspond-
ing path length classPath[dest,type,0], then we get the extra
distances. LetEi (0≤ i ≤ 3) be the extra distance for the
case ofdest= i, then

E0 = [2m(2m−1)+2m(2m−1)]×2+
[2m(2m−1)2 +2m(23m−22m)]×4,

E1 = [22m(2m−1)+22m(2m−1)+22m(2m−1)2]×2,
E2 = [22m(2m−1)+22m(2m−1)+22m(2m−1)2]×2,
E3 = 22m(2m−1)2×2.

The total extra distance isE = ∑3
i=0Ei = 5×24m+1−2×

23m+1−3×22m+1. Therefore, the time the metacube takes
for total exchange is

TM =(p−1)(ts+gtw)+[p(
1
2

logp+
5
2
)−
√

2p3/4−3
√

p ]th.

For an MC(2,2), TM = 1023(ts+gtw)+7328th. The hy-
percube with the same size is a 10-cube, andTC = 1023(ts+
gtw) + 5120 th. It shows that our result is quite satisfac-
tory since an MC(2,2) uses only 40% of the links in com-
parison to the hypercube. The ratio of the time difference
between metacube and hypercube to the total time will be-
come smaller for largerm.

4. Conclusion and future work

In this paper, we proposed a new interconnection net-
work, the metacube, and showed that the total exchange
can be done efficiently on it. The proposed metacube has
tremendous potential to be used as an interconnection net-
work for very large scale parallel computers since it can
connect more than one hundred of millions of nodes with
only 6 links per node and retains hypercube’s properties that
are useful for efficient communications among the nodes.

Recently, much of the community has moved on to
lower-dimensional topologies such as meshes and tori.
However, the SGI Origin2000, a fairly recent multipro-
cessor, does use a hypercube topology, so the metacube
could be of use to industry. A lot of issues concerning the
metacube require further research. Some of them are:

1. Evaluate the architecture complexity vs. performance
of benchmarks vs. real cost.

2. Investigate the embedding of other frequently used
topologies into a metacube.

3. Develop techniques for mapping application algo-
rithms onto a metacube.

4. Develop fault-tolerant routing algorithms for a
metacube with faulty nodes.

References

[1] A. E. Amawy and S. Latifi. Properties and performance of
folded hypercubes.IEEE Transactions on Parallel and Dis-
tributed Systems, 2:31–42, 1991.

[2] J. Duato, S. Yalamanchili, and L. Ni.Interconnection net-
works: an engineering approach. IEEE Computer Society
Press, 1997.

[3] K. Efe. The crossed cube architecture for parallel compu-
tation. IEEE Transactions on Parallel and Distributed Sys-
tems, 3(5):513–524, Sep. 1992.

[4] K. Ghose and K. R. Desai. Hierarchical cubic networks.
IEEE Transactions on Parallel and Distributed Systems,
6(4):427–435, April 1995.

[5] S. L. Johnson and C.-T. Ho. Optimum broadcasting and per-
sonalized communication in hypercubes.IEEE Transactions
on Computers, 38(9):1249–1268, 1989.

[6] P. Kermani and L. Kleinrock. Virtual cut-through: a new
communication switching technique.Computer Networks,
13:267–286, 1979.

[7] V. Kumar, A. Grama, A. Gupta, and G. Karypis.Intro-
duction to parallel computing: design and analysis of al-
gorithms. Benjamin/Cummings Press, 1994.

[8] Y. Lan, A. H. Esfahanian, and L. M. Ni. Multicast in hyper-
cube multiprocessors.Journal of Parallel and Distributed
Computing, 16(1):30–41, 1990.

[9] Y. Li and S. Peng. Dual-cubes: a new interconnection net-
work for high-performance computer clusters. InProceed-
ings of the 2000 International Computer Symposium, Work-
shop on Computer Architecture, pages 51–57, December
2000.

[10] Y. Li, S. Peng, and W. Chu. Efficient collective communica-
tions in dual-cube. InProceedings of the Thirteen IASTED
International Conference on Parallel and Distributed Com-
puting and Systems, pages 266–271, Aug. 2001.

[11] P. K. McKinley, Y. J. Tsai, and D. Robinson. Collective com-
munication in wormhole-routed massively parallel comput-
ers.IEEE Transactions on Parallel and Distributed Systems,
7(2):184–190, 1996.

[12] L. Ni and P. McKinley. A survey of wormhole routing tech-
niques in direct networks.IEEE Computer, 26(2):62–76,
1993.

[13] F. P. Preparata and J. Vuillemin. The cube-connected cy-
cles: a versatile network for parallel computation.Commun.
ACM, 24:300–309, May 1981.

[14] C.-H. Yeh and E. A. Varvarigos. Macro-star networks: Effi-
cient low-degree alternatives to star graphs.IEEE Transac-
tions on Parallel and Distributed Systems, 9(10):987–1003,
Oct. 1998.

[15] S. G. Ziavras. RH: a versatile family of reduced hyper-
cube interconnection networks.IEEE Transactions on Par-
allel and Distributed Systems, 5(11):1210–1220, November
1994.

170


