
International Journal of Modelling and Simulation, Vol. 18, No. 3, 1998, pp.201–207

A MODEL FOR PREDICTING UTILIZATION OF MULTIPLE PIPELINES IN
MTMP ARCHITECTURE

Yamin Li and Wanming Chu

Computer Architecture Laboratory
Department of Computer Hardware

The University of Aizu
Aizu-Wakamatsu, 965-80 Japan

Email: {yamin,w-chu}@u-aizu.ac.jp

Abstract

The conventional single-threaded multiple-pipelined processor is
not capable of using multiple pipelines efficiently, and so the proces-
sor performance suffers. This paper investigates a multiple-threaded
multiple-pipelined (MTMP) processor architecture that tries to issue
multiple instructions from multiple instruction threads in every clock
cycle. For the performance evaluation, the paper proposes a modi-
fied analytic model that provides a quick prediction of utilization of
pipelines. Unlike previous analytic models of multiple-threaded archi-
tecture, the model presented here concerns the utilization of multiple
pipelines. It deals not only with pipeline dependencies but also with
structure conflicts. The model can be used for turning processor pa-
rameters when a MTMP is designed.

Key Words

Multithreading, multipipelining, scheduling, speed-up, pipeline uti-
lization

1. Introduction

The performance of single-threaded processors has been im-
proved significantly by introducing deep pipelines [1] and by
dispatching more than one instruction per clock cycle [2]. Be-
cause of the significant advances in circuit technology, more
and more gates are available for designing multiple pipelined
functional units in a single chip. However, the single-threaded
processor will no longer significantly increase the processing
speed because of the data and control dependencies between the
instructions within a single thread. The dependencies introduce
pipeline bubbles by forcing interlock delay between dependent
instructions, and result in a low functional unit utilization.

The multiple-threaded multiple-pipelined (MTMP) architec-
ture can make multiple pipelines busy and hence can further im-
prove the processor performance. Multiple thread slots dispatch

instructions from multiple threads simultaneously. A thread slot
is a hardware unit that is responsible for fetching and decoding
instruction. Usually, the number of thread slots is less than the
number of instruction threads. The instructions are executed in
functional units.

When the number of thread slots is given, using more func-
tional units in a single processor will improve the processor per-
formance but will result in a low functional unit utilization. On
the other hand, using fewer functional units will improve uti-
lization but at the cost of reduced performance. A compromise
between processor performance and functional unit utilization
must be made for the processor design. Dubey et.al. [3] pro-
posed an analytic model for evaluating the multiple-threaded
architecture. Their model is limited to predicting the perfor-
mance of a processor with single pipeline and single thread slot.
Because at most one instruction can be issued on every clock cy-
cle, no structure conflict exists. The processor performance is
affected only by the distribution of instruction interlock delay.
When the processor has sufficient instruction threads for inter-
leaved scheduling (for example, when the number of threads is
equal to or larger than the maximal number of cycles required
by execution pipeline stage), the processor utilization is said to
be 100%. But when the processor has six independent execu-
tion pipelines, for instance, the average pipeline utilization is
only 16.7%.

This paper proposes an analytic model that is used to quan-
tify the utilization of multiple pipelines for MTMP architecture.
The model deals not only with pipeline dependencies but also
with structure conflicts. The effects of four important param-
etersS, T , E, andP (STEP) will be evaluated whereS is
the the number of thread slots,T is the number of resident in-
struction threads,E is the maximal number of cycles required
by execution stage, andP is the number of pipelined functional
units. The model accepts a general distribution for the interlock
delays with multiple latencies the same as in [3] and a general
distribution for the different type of instructions that will be dis-

201

patched to different pipelines. The model predicts the utilization
of multiple pipelines for different processor configurations, for
example, for different number of thread slots, different number
of pipelined functional units, and different number of resident
threads.

The paper is organized as follows. Section 2 presents an ar-
chitecture classification. Section 3 introduces the MTMP pro-
cessor architecture. Section 4 describes the analytic model.
Section 5 considers three examples in discussing the effects of
STEP. Section 6 concludes the paper.

2. An Architecture Classification
According to the number of execution pipelines and the num-

ber of instruction threads, we divide the pipelined architectures
into four types: single-threaded single-pipelined(STSP) ar-
chitecture,multiple-threaded single-pipelined(MTSP) architec-
ture, single-threaded multiple-pipelined(STMP) architecture,
andmultiple-threaded multiple-pipelined(MTMP) architecture
(fig. 1).

Pipelining has been widely used in designing processors for
exploiting the parallelism of operations. The potential speed-
up of pipelining is equal to the number of pipeline stages
used. This advantage encourages engineers to use deeper and
deeper pipelines in designing high-performance processors. In
the STSP architecture, a single thread is executed on a single
pipeline (fig. 1(a)). The ideal throughput is at one instruction
per cycle.

However, the ideal pipeline speed-up is rarely achieved in
practice owing to the delays associated with pipeline depen-
dencies and memory access latencies. NOOP instructions (no
operation, that is, pipeline bubbles) will be inserted into the de-
lay cycles. An approach for improving pipeline utilization is
to multithread the processor. Such processors dispatch instruc-
tions from different threads on every clock cycle to tolerate the
delays. We call them multiple-threaded single-pipelined archi-
tecture (fig. 1(b)). An instruction thread is defined as a set of in-
structions belonging to a particular context that can be executed
independently of other instruction threads [4]. Because there is
no pipeline dependency between instructions belonging to dif-
ferent threads, pipeline bubbles due to pipeline dependencies or
processor stalls due to memory latencies can be prevented [5].

The STMP architecture is shown in fig. 1(c). Actually, In
a practical processor there are dedicated pipelined functional
units. Each functional unit performs a special operation so that
the computing speed can be improved. In the modern high-
performance microprocessor, the following pipelined functional
units are in general use: ALU, shifter, branch unit, load/store
unit, floating-point adder, multiplier, divider, and converter.
Most commercial superscalar processors use the STMP archi-
tecture.

The MTSP architecture is efficient when the processor has a
deep pipeline and the context switch overhead is low. In order
to speed-up the context switch, multiple register sets and spe-
cial data paths are usually needed to serve multiple threads. As

only one thread uses its register set at a given time, the MTSP
processors result in a low utilization of multiple register sets.
Also notice that the average cycles per instruction cannot be
less than one. On the other hand, the STMP architecture can
improve the processing speed by providing effective execution
pipelines. However, such single-threaded processor cannot use
the multiple pipelines effectively owing to lack of sufficient in-
structions that can be issued on the same clock cycle. Usually,
only a few pipelines are busy and the others are idle, even if
the processor has superscalar capability [2]. Allocating mul-
tiple thread slots in a single processor, to realize multiple in-
struction threads to be executed simultaneously is a solution for
improving the utilization of multiple pipelines [4, 6]. We call
such architecture multiple-threaded multiple-pipelined architec-
ture (fig. 1(d)). The multiple threads may be generated from a
single program or from multiple programs. Thus, the MIMD
parallel processing will be realized on a single processor.

3. The MTMP Processor Architecture Model
In the MTMP architecture, multiple thread slots, multiple

dedicated pipelined functional units, and multiple register files
are provided for executing multiple instruction threads in paral-
lel. All the thread slots dispatch instructions on every clock cy-
cle. Instructions are scheduled and issued to multiple functional
units for execution, and results are written to register files.

Differing from a conventional pipelined processor, MTMP
architecture contains state information ofT threads. Each thread
has its own program counter, status register, and register file.
P functional units serve asP independent execution pipelines
to support multiple instruction executions. There areS thread
slots used for instruction dispatching. The instruction thread
slots selectS threads fromT threads in an interleaved fashion.
On every clock cycle, up toS instructions can be dispatched.

A separate instruction cache is provided for each of thread
slots. In order to facilitate the interleaved thread selection,T in-
struction threads are distributed toS instruction caches equally.
Each instruction cache contains an average ofT/S instruction
threads.

An instruction scheduling unit(ISU) schedules theSinstruc-
tions and issues them to the functional units if there are nei-
ther structure conflicts amongS instructions nor pipeline de-
pendencies with previously issued instructions within a thread.
If two or more instructions require the same functional unit on
the same clock cycle, then structure conflict occurs.

The ISU selects one instruction to issue to the functional
unit if dispatched instructions cause structure conflicts. In order
to simplify the processor design, a simple instruction schedul-
ing strategy,round robin, is employed. Availability of source
operand is checked by using thescoreboardmechanism. If the
scoreboard bits of the source operands are cleared, a ready in-
struction is found. Then the source operands are read out from
the correct register file and destination register’s scoreboard bit
is set. The scoreboard bit will be cleared at the final clock cy-
cle of execution stage. Thus the scoreboard bits could prevent

202

IF SD E1 WB

T1:i2T1:i3T1:i4T1:i5

(a) Single-threaded single-pipelined processor

IF SD WB

T1:i1T2:j1T3:k1T2:j2

(b) Multiple-threaded single-pipelined processor

T1:i1

E2

T1:i2

E1 E2

IF SD E1 WB

T1:i4T1:i6

(c) Single-threaded multiple-pipelined processor

T1:i1

E2

T1:i2

T1:i3

(d) Multiple-threaded multiple-pipelined processor

IF SD WBE1 E2

T1:i2

T1:i3

T1:i4T1:i5 T1:i1

T2:j2

T2:j3

T2:j4T2:j5 T2:j1

T3:k2

T3:k3T3:k4T3:k5 T3:k1T4:m2

T4:m3

T4:m4T4:m5 T4:m1

T1:i5T1:i8

T1,T1,T1

T2,T1,T3

T1,T1,T1

T1,T1,T1

T2,T2,T2

T3,T3,T3

T4,T4,T4

IF:Instruction Fetch. SD:Schedule and Decode. E1,E2:Execution 1,2. WB:Write Back.
T1:Instruction Thread 1. i1,i2,i3,...:Instructions in Thread 1.
T2:Instruction Thread 2. j1,j2,j3,...:Instructions in Thread 2.
T3:Instruction Thread 3. k1,k2,k3,...:Instructions in Thread 3.
T4:Instruction Thread 4. m1,m2,m3,...:Instructions in Thread 4.

T1:i7

Figure 1. Pipelined execution models

incorrect data from entering into the pipelines.
The ISU is provided for each functional unit and FIFO reg-

isters for each thread slot are provided in the ISU. Un-issued
instructions will be held in FIFO, waiting for scheduling in the
following clock cycle. The thread slot is informed to stop fetch-
ing instructions from corresponding thread slots in the follow-
ing clock cycle. Because the next instruction to the un-issued
instruction is being fetched, the FIFO must have at least two
registers for the thread slot. The total number of FIFO registers
is 2 ∗ S ∗ P , whereS is the number of thread slots andP is the
number of functional units.

The functional units carry out the desired data operations,
and the results are written back into register file. Fig. 2 shows
the data path and control path of the proposed MTMP architec-
ture. An interconnection network(IN) is needed between the
register files and the functional units. From the programmer’s
point of view, this physical MTMP processor is equal toS log-
ical MTSP processors and each MTSP processor executesT/S
threads concurrently.

Referring to fig. 2, each instruction pipeline comprises four

stages: IF (instruction fetch), SD (schedule and decode), EX
(execution), and WB (write back). During the IF-stage, each
slot may fetch one instruction from dedicated cache. Because
each slot deals with multiple instruction threads, the election
of threads must be done before the fetching. The election
strategy is very simple: rotating among all the threads (inter-
leaved dispatching). The instruction thread slot may receive
a “freeze fetching ” signal from the ISU. In this case,
the instruction fetching will be frozen. Structure conflicts and
source operand availability will be checked in the SD-stage. As
mentioned above, the processor uses the round robin strategy
to schedule the instructions. If an instruction is not issued to
execution pipeline, it will be held in the two-word depth FIFO,
and, the “freeze fetching ” signal will be sent to the corre-
sponding instruction thread slot. Operands are also read in SD-
stage. The interconnection network provides nonblocking paths
for transferring data from the register files to the pipeline reg-
ister. Because at most one instruction belonging to one thread
could be executed, the register file was designed with only two
read ports and one write port. The desired data operations are

203

To other
(P-1)FUs

Decode

Schedule

FIFO 1 FIFO 2 FIFO S

Cache 1 Cache 2 Cache S

PC 0,1 PC 2,3 PC T

Exe-Cntr 1

Reg.F.1 Reg.F.2 Reg.F.T

FUj
j=1,2,...,P

Latch A Latch B

Interconnection Network I

Interconnection Network II

T
o

O
t
h
e
r

F
U
’
s

F
I
F
O
s

...

... ...

...

...

.

...

Res-p 1

Res-p 2

Res-p E

...

FU-phase 1

FU-phase 2

From other
(P-1)FUs

Exe-Cntr 2

Exe-Cntr E

FU-phase E

...

Write-Cntr

I
n
s
t
r
u
c
t
i
o
n

F
e
t
c
h

S
c
h
e
d
u
l
e

a
n
d

D
e
c
o
d
e

E
x
e
c
u
t
i
o
n

W
r
i
t
e

B
a
c
k

CONTROL
FOR FUj

Figure 2. Data and control path in a MTMP processor

performed in the EX-stage. For most integer instructions, the
execution stage takes one clock cycle. The floating point adder
and multiplier take three clock cycles. And the floating point
divider takes thirteen clock cycles. The results are written back
into register file in the WB-stage. The interconnection network
also provides nonblocking paths for transferring data from the
result-registers to the register files.

4. The Analytic Model

In this section, we propose an analytic model for predicting
processor-performance improvement and functional unit uti-
lization for the MTMP processor architecture.

According to the MTMP architecture described in Section 3,
we make the following assumptions: (1) There areT instruction
threads. (2) There areS thread slots that can dispatch instruc-
tions simultaneously, and for fast instruction fetching, a sep-
arated instruction cache is provided for each thread slot. (3)
The processor has more instruction threads than thread slots

and the instruction threads are distributed equally to instruction
caches: each cache holds averageT/S threads. (4) TheT/S in-
struction threads are interleaved and one instruction is fetched
from the selected thread per clock cycle. (5)P pipelined func-
tional units are provided. (6) All the functional units are ef-
fectively pipelined and are capable of accepting a new instruc-
tion in every cycle. (7) All the instructions are divided intoP
classes: thejth class instructions will be executed on thejth
functional unit(j=1,2,...,P). (8) The percentage of occurrences
of thejth class instructions in dynamic instruction stream isρj
(j=1,2,...,P). (9) the distribution of interlock delays is described
by the probability vectorp = (p1, p2, ..., pE), wherepj is the
fraction of instructions that have an interlock delay ofj-1 cycles
after they were scheduled, andE-1 is maximum of interlock de-
lay cycles, that is,E is the maximal number of cycles required
by execution pipeline stage.

First of all, consider a conventional processor:T=1 andS=1.
TheCPI (cycles per instruction) estimate can be easily obtained
[3] as:

204

Interlock delay = 3 instructions

Interlock delay = 1 instruction

(a) One thread

(b) Two threads interleaving

Interval = 1 cycle

Interval = 2 cycles

1 2 3

1

Interlock delay = 0 instruction

(c) Four threads interleaving

Interval = 4 cycles

Figure 3. Interlock delay and interval cycles

CPI = 1 +
E
∑

j=1

pj ∗ (j − 1). (1)

For example, anE=4 processor has following distribution
of interlock delays. 20% of instructions in dynamic execution
stream have an interlock delay of three cycles; 10% of instruc-
tions have an interlock delay of two cycles; and 30% of instruc-
tions have an interlock delay of one cycle. The remaining in-
structions require no interlock delay. TheCPI of the processor
is 1 + 0.4 ∗ 0 + 0.3 ∗ 1 + 0.1 ∗ 2 + 0.2 ∗ 3 = 2.1, as given
by (1). The number of real executed instruction-per-cycle is
1/2.1=0.476, that is, the processor utilization is47.6%.

Now, consider that there are two instruction threads,T=2,
that share the processor pipeline. Two threads are scheduled
alternately, that is, theinterval of dispatching instructions from
a thread is two cycles (fig. 3). Because independent instructions
will be inserted into the instructions of a thread, the suffering of
interlock delay will be alleviated for each thread. For example,
in theE=4 processor mentioned above, 20% of instructions have
a new interlock delay of one instruction cycle.

Generally, in a processor withT instruction threads, the new
value of interlock delays will be changed from(j − 1) cycles
to (j/T − 1) cycles. Therefore, we can obtain the newCPI,
denoted byCT , for aT-threadprocessor as:

CT = 1 +
E
∑

j=1

pj ∗max(0, (
j

T
− 1)). (2)

In the mentionedE=4, T=2 processor, theC2 is 1 + 0.4 ∗
0 + 0.3 ∗ 0 + 0.1 ∗ 0.5 + 0.2 ∗ 1 = 1.25. The number of
real executed instructions per cycle is 1/1.25=0.8. The proces-
sor utilization increased from 47.6% to 80.0%, that is, 68% of
improvement was achieved. Note that in theT ≥ E processor,

CT reaches the minimum of one cycle, that is, the processor
utilization is 100%. However, if the processor has seven inde-
pendent execution pipelines (P = 7), (ALU, shifter, load/store
unit, branch unit, floating-point adder, multiplier, and divider,
for instance), the total average utilization of all the pipelines
must be (100/7)% = 14.3%.

For theS > 1 processor, maximalS instructions can be dis-
patched and issued toP execution pipelines. The structure con-
flicts must be considered in theS > 1 processor. According
to the assumptions described in the beginning of this section, if
the number of thejth class instructions to be dispatched on the
same cycle is less than or equal to one, there will be no structure
conflicts. If not, at most one instruction can be executed. The
maximal average number of thejth class instructionsξj(S),
which are dispatched tojth functional unit, can be calculated
by:

ξj(S) =
S
∑

i=1

S!
i!(S − i)!

ρij(1− ρj)S−i ∗ 1 = 1− (1− ρj)S .

(3)
The total number of instructionsN , which are dispatched

from S thread slots whose instructions are all data-ready, can
be calculated by considering all the instruction classes:

N =
P
∑

j=1

ξj(S) =
P
∑

j=1

(1− (1− ρj)S). (4)

N is an approximation derived from only resource con-
straints. We assume that the instructions come fromS thread
slots equally. Thus, each thread slot dispatchesN/S instruc-
tions. Note thatN/S ≤ 1. Because each thread slot hasT/S
instruction threads and dispatchesN/S instructions per cycle,
the interval of dispatching instructions from a thread is equal to
(T/S)/(N/S), that is, there aren = T/N virtual threads in a
thread slot. In this case, similar to (2), theCPI for thoseN
instructions, denoted byCn, should be calculated by:.

Cn = 1 +
E
∑

j=1

pj ∗max(0, (
j ∗N
T
− 1)). (5)

The total number of real executed instructionsI can be cal-
culated by dividingN byCn, I = N/Cn, and the total average
utilization of all the pipelinesµ can be obtained by dividingI
by P :

µ =
N

P ∗ Cn
. (6)

The performance improvement is measured by the speed-up
ratio ν, which is defined as the ratio of execution time required
by S > 1-slot parallel multithreaded execution to those byS =
1-slot concurrent multithreaded execution. The execution time
of a given program can be expressed as the product of three
terms:i ∗ c ∗ t, wherei is the number of instructions required,
c is the average number of cycles per instruction, andt is the

205

time per cycle. We can get the speed-up ratioν from (7) at the
assumption of samet in the both cases:

ν =
i ∗ CT ∗ t

i ∗ (Cn/N) ∗ t
= N ∗ CT

Cn
. (7)

5. Examples and Validation

As mentioned in Section 3, in the MTMP processor, there
are four parameters that influence the processor performance
and utilization of functional units. The four parameters are de-
noted byS, T , E, andP . S is the number of thread slots that
affects the capability of dispatching instructions per cycle.T
is the number of resident instruction threads, which affects the
interval cycles of thread interleaving.E is the maximal number
of cycles required by execution stage and it affects the interlock
delay cycles, andP is the number of pipelined functional units,
which affects the structure conflicts.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Instruction Threads (T)

P=6, E=4
S=7
S=5
S=3
S=1

Figure 4. Speed-Up ratios for P=6 and E=4 pro-
cessor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of Instruction Threads (T)

P=6, E=4
S=7
S=5
S=3
S=1

Figure 5. FU utilization for P=6 and E=4 proces-
sor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of pipelined function units (P)

S=6, T=12E=1
E=3
E=5
E=7

Figure 6. Speed-Up ratios for S=6 and T=12 pro-
cessor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of pipelined function units (P)

S=6, T=12
E=1
E=3
E=5
E=7

Figure 7. FU utilization for S=6 and T=12 proces-
sor

In the following examples, we assume thatρj = 100%/P
for j = 1, 2, ..., P andpj = 100%/E for j = 1, 2, ..., E. The
first example (fig. 4 and 5) shows the effects ofS andT when
P=6 andE=4. By increasing the number of thread slotsS, we
improve the speed-up and the average utilization, but when the
number of thread slots is greater than four, significant improve-
ment cannot be obtained by further increasing the number of
thread slots. Also, we found that increasing the number of in-
struction threadsT does not always result in performance im-
provement and utilization improvement.

The second example (fig. 6 and 7) shows the effects ofP
andE, whenS = 6 andT = 12, on speed-up ratio and average
utilization. WhenE is large, increasing the number of func-
tional units results not in increased speed-up but in decreased
utilization of functional units.

The third example (fig. 8 and 9) shows the effects ofT and
E, whenS = 6 andP = 6. Note that there are upper bounds of
speed-up ratio and average utilization that are caused by struc-
ture conflict. The upper bounds will be reached quickly when

206

E is small. In this case, increasing the number of instruction
threads does not result in increased speed-up and increased uti-
lization.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Instruction Threads (T)

S=6, P=6E=1
E=3
E=5
E=7

Figure 8. Speed-Up ratios for S=6 and P=6 pro-
cessor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of Instruction Threads (T)

S=6, P=6E=1
E=3
E=5
E=7

Figure 9. FU utilization for S=6 and P=6 processor

For the model validation, we choose a texture mapping
program, that maps a texture pattern onto a 3D object’s per-
spective projection in screen space. Seven functional units
are arranged for executing the program: (1) integer unit per-
forms integer arithmetic and logic operations; (2) load/store unit
performs memory access; (3) branch unit evaluates condition
codes and transfers control to new address; (4) floating-point
adder performs floating-point add, subtract, and comparison; (5)
floating-point multiplier performs floating-point multiplication;
(6) floating-point divider performs floating-point division; and
(7) floating-point convert unit performs floating-point/integer
data type conversions.

We assume that all the functional units are capable of re-
ceiving a new instruction per cycle but have different execution
cycles as follows. The integer unit and the branch unit have one
execution cycle. The load/store unit has two execution cycles

when the data cache hits. The floating-point adder, multiplier,
and convert unit have three execution cycles. The floating-point
divider has thirteen execution cycles.

The program is compiled to assembly code and the multiple
code streams are used as inputs to a MTMP architecture simu-
lator. As mentioned in Section 3, the processor has a separated
instruction cache for each thread slot and a data cache for all
the thread slots. The multiple streams are distributed equally to
the instruction caches. In order to simplify the simulation, we
assume that the cache accesses always hit.

For the calculation by the equations, we get the instruction
distribution ρj for j = 1, 2, ..., P and the distribution of in-
terlock delay cyclespi for i = 1, 2, ...,max(E1, E2, ..., EP)
from the dynamic execution stream. The simulated results of
speed-up ratio on texture mapping program are almost equal to
the results generated by using analytic model, with the average
deviation less than 1%.

6. Conclusion
In this paper, we have presented a multiple-threaded

multiple-pipelined architecture that realizes multiple multiple-
threaded single-pipelined processors in a single processor en-
vironment. The MTMP processor contains multiple pipelined
functional units and multiple thread slots. Each thread slot has
multiple instruction threads, and the threads are interleaved for
dispatching. In order to evaluate the MTMP architecture, we
proposed an analytic model that provides a quick prediction for
performance improvement and for average utilization of mul-
tiple functional units. The model deals not only with pipeline
dependencies but also with structure conflicts. The effects of
four important parameters in MTMP architecture,STEP , were
evaluated and the analytic model was validated by simulation.

References

[1] “R4000: 64-bit RISC microprocessor user manual,” (Toshiba
Corp., Tokyo, Japan, 1992).

[2] K. Diefendorff and M. Allen,“Organization of the Motorola
88110 Superscalar RISC Microprocessor,” inIEEE MICRO,
12(2), April 1992, pp40-63.

[3] P. K. Dubey, A. Krishna, and M. J. Flynn, “Analytical modeling
of multithreaded pipelined performance,” inProc. of the 27th An-
nual Hawaii Intl. Conf. on System Sciences, Maui, Hawaii, 1994,
pp361-367.

[4] R. Guru Prasadh and Chuan-lin Wu, “A benchmark evaluation
of a multi-threaded RISC processor architecture,” inProc. of the
20th Intl. Conf. on Parallel Processing, Boca Raton, FL, 1991,
ppI:84-91.

[5] D. C. McCrackin, “Eliminating interlocks in deeply pipelined
processors by delay enforced multistreaming,”IEEE Trans. on
Computers, 40(10), Oct. 1991, pp1125-1132.

[6] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizaki, A. Nishimura,
Y. Nakase, and T. Nishizawa, “An elementary processor architec-
ture with simultaneous instruction issuing from multiple threads,”
in Proc. of the 19th Annual Intl. Conf. on Computer Architecture,
Gold Coast, Australia, May 1992, pp136-145.

207

