
Adaptive Box-Based Efficient Fault-Tolerant Routing in 3D Torus

Yamin Li, Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

Abstract

In this paper, we propose efficient fault-tolerant routing
algorithms for 3D torus with possible large number of faulty
nodes. There is no any presumption on the number and the
distribution of faulty nodes. The proposed algorithms find a
fault-free path between any two nonfaulty nodes with high
probability in linear time by using only the local faulty in-
formation of the network. The results of our empirical anal-
ysis through simulations show that the algorithms can find
a fault-free path between any two nonfaulty nodes with a
probability higher than 90% in a 3D torus with the num-
ber of faulty nodes up to 30%.

1. Introduction

The three dimensional (3D) mesh/torus has constant
node degree, recursive structure, simple communication al-
gorithms, and good scalability. Due to these attractive prop-
erties, the mesh/torus has been the common interconnec-
tion network for several commercially available parallel
computers, such as Cray XT3 [9] and IBM Blue Gene/L
(BG/L)[2].

It is foreseeable that 3D mesh or torus architectures will
become viable alternatives for parallel computer design be-
cause to implement a 3D mesh or torus in the 3D physical
space is becoming possible as the IC technology advances.
In IBM BG/L’s case, the network is integrated onto the same
chip that does computing, that is, no separate switch is re-
quired.

A 3D mesh can be laid out on a 3D chip in an area that
increases linearly with the number of processors. Since the
implementation of 3D mesh uses short, local links only, it
is possible to perform communication at very high speed.
A 3D torus has wraparound links. However,the method of
folding can be used to lay out a 3D torus in such a way that
it uses only short, local links too.

The 3D torus is an interconnection network of great po-
tential due to its high bandwidth nearest neighbor connec-

tivity for efficient computation and fast communication in
many scientific applications. In this paper, we focus our de-
signs on 3D torus. However, the design is easily to extend
to kD torus for any k > 3.

Fault-tolerant routing is a dominant issue facing the de-
sign of interconnection networks for large-scale parallel
computers. There are many fault models used for designing
fault-tolerant routing algorithms [1, 3, 4, 7, 8, 10, 11, 12].
Some set conditions on the number of faulty nodes or the
shape of faulty components. Others use global fault infor-
mation (off-line) or partially global information. Chen et.
al [5, 6] introduced the concept of local-subcube connectiv-
ity for hypercubes. In this paper, we develop fault-tolerant
routing algorithms on 3D torus using local information only
(on-line), and allow arbitrary number of faulty nodes with
no restriction on the shape of the faulty nodes (blocks).

The rest of this paper is organized as follows: In the next
section, we give necessary notation and definitions used
throughout the paper. We also show a theorem that is a the-
oretical ground of the proposed routing algorithms. In Sec-
tions 3, 4, and 5, respectively, three fault-tolerant routing al-
gorithms are proposed on 3D torus with possible large num-
ber of faulty nodes. In Section 6, simulations are performed
and the results are analyzed and discussed. Finally, in the
last section, we conclude this paper with some remarks.

2. Locally-Safe Torus

A kD n-torus T kn has k dimensions, n nodes per di-
mension, and N = nk nodes. Each node is uniquely in-
dexed by a radix-n k-tuple. Each node is connected via
communication links to two other nodes in each dimen-
sion. The neighbors of node s = (s0, . . . , sk−1) in dimen-
sion i are (s0, . . . , si−1, si ± 1, si+1, . . . , sk−1), where ad-
dition and subtraction are performed modulo n. For sim-
plicity, throughout this paper, all arithmetics on the in-
dices of nodes in a given torus should be modulo n im-
plicitly. The distance between two nodes s and t in T kn is
d(s, t) =

∑k−1
i=0 min(|si − ti|, n − |si − ti|). In this pa-

per, we work on 3D torus only. For simplicity, we use term



T , instead of T 3
n , to denote a 3D n-torus if no confusion

arises.
For a given node s = (s0, s1, s2) in T , we denote its two

neighbors in dimension i by si+ and si−, respectively. For
example, s0+ = (s0 + 1, s1, s2) and s0− = (s0−1, s1, s2).
A 3D m-mesh M3

m, or simply M , in a 3D torus T is a sub-
graph of T , andM is a 3D mesh of sizem (m nodes in each
of the three dimensions).

We say that T is locally-m-safe if the following condi-
tions are satisfied.

1. for every 3Dm-meshM in T , the subgraph formed by
all nonfaulty nodes in M is connected, and

2. every boundary B of M (m-square) contains at least
one nonfaulty node.

We say that T is locally-safe if there exists an integer
m, 2 ≤ m ≤ n, such that T is locally-m-safe. The follow-
ing theorem shows that local-safety implies connectedness
of T .

Theorem 1. If a 3D torus T is locally-safe then T is a con-
nected graph.

Proof Let s = (s0, s1, s2) and t = (t0, t1, t2) are two
nonfaulty nodes in T . Without loss of generality, we assume
that si < ti for 0 ≤ i ≤ 2. We also assume that si+ and si−

be the neighbors of s on dimension i such that si+ is the
neighbor of s closer to t (d(si+, t) = d(s, t) − 1). Since T
is locally-safe there exists an integer m, 2 ≤ m ≤ n, such
that T is locally-m-safe. Let P = (s → t) be the shortest
path from s to t constructed by the dimension-order rout-
ing (routing along dimension 0, then dimension 1, and then
dimension 2). We construct a tube with 2 turns (3 pipes)
such that path P is enclosed in the tube as shown as in Fig-
ure 1.

0
1

2

s

t

P0

P1

P2

Figure 1. Routing in tubes

Let P = P0∪P1∪P2, where P0, P1, and P2 are the seg-
ments s → u, u → w, and w → t along 0, 1, and 2 dimen-
sions, respectively, where u = (u0, u1, u2) = (t0, s1, s2)
and w = (w0, w1, w2) = (t0, t1, s2). The tube has three
parts pipe0, pipe1, and pipe2 defined as follows:

• pipe0 = {v ∈ T |s0 ≤ v0 ≤ t0, and si − bm/2c ≤
vi ≤ si + dm/2e − 1, for i = 1 and 2}
• pipe1 = {v ∈ T |u1 − bm/2c ≤ v1 ≤ w1 and ui −
bm/2c ≤ vi ≤ ui + dm/2e − 1, for i = 0 and 2}

• pipe2 = {v ∈ T |w2 − bm/2c ≤ v2 ≤ t2 and wi −
bm/2c ≤ vi ≤ wi + dm/2e − 1, for i = 0 and 1}

Consider pipe0 as a sequence of 3D m-meshes Mi, 0 ≤
i ≤ p, such that

1. pipe0 ⊂ ∪pi=0Mi and Bi = Mi−1 ∩Mi, 1 ≤ i ≤ p,
are 2D m-meshes;

2. s ∈M0 and u ∈Mp.

Let Bu = {v ∈ pipe0|v0 = u0}. Obviously, we have
Bu ⊂ Mp. Since T is locally-m-safe, there exist nonfaulty
nodes vi ∈ Bi, 1 ≤ i ≤ p, nonfaulty node u′ ∈ Bu,
and fault-free paths: (s → v1) ⊂ M0, (v1 → v2) ⊂
M1, . . . , (vp → u′) ⊂ Mp. Then, the path (s → v1 →
v2 . . .→ vp → u′) is the fault-free path from s to u′. From
the definition of pipe1, we have u′ ∈ pipe1. Let w′ ∈ pipe1

be a nonfaulty node such that w′1 = w1 = t1. By the sim-
ilar argument, we can find nonfaulty node w′ ∈ Bw =
{v ∈ pipe1|v1 = w1} and a fault-free path in pipe1 from
u′ to w′; and a fault-free path in pipe2 from w′ to t. There-
fore, s and t can be connected through the fault-free path
s→ u′ → w′ → t. We conclude that T is connected.

Corollary 1. If a 3D torus T is locally-m-safe then T is also
locally-l-safe for all l ≥ m.

The proof of the theorem is a constructive one. It pro-
vides the ground for our first fault-tolerant routing algo-
rithm to be presented at next section.

3. Tube-Routing Algorithm

For practice, we do not presume that T is locally-safe.
The number of faulty nodes or its distribution is arbi-
trary. Our routing algorithms are local-information-based:
no global information about the situation of the network is
needed. If T is locally-m-safe then from theorem 1, the al-
gorithm will generate a fault-free path. Otherwise, it will ei-
ther generate a fault-free path or report a failure.

The algorithm follows the constructive proof of theo-
rem 1. A tube that encloses the shortest path P is used for
the fault-tolerant routing. While routing from source s to
destination t, the path is allowed to move inside the tube



through a sequence of boxes as specified in the proof of
theorem 1. However, for higher successful routing rate, we
construct the pipe0 such that, for any v ∈ pipe0, d(vi, ti) ≤
d(si, ti)+1, i = 1, 2. This is done by shifting pipe0 toward
the destination node t along dimensions 1 and 2 such that
one of the farthest corner nodes b on the boundary Bs will
be (s1−)2−, where si− is the neighbor of s along diemn-
sion i that is farther away from t. Notice that P0 is still en-
closed insde the shifted pipe0.

The pipe1 and pipe2 are constructed similarly. The de-
tails are specified in Algorithm 1. We call this algorithm
Tube Routing (see Algorithm 1). The rate of successful
routing of the algorithm will be analyzed empirically and
the simulation results will be used to compare with that of
the other routing algorithms proposed in this paper.

Algorithm 1 (Tube Routing(Tn,m, s, t))
Input: 3D n-torus Tn, size of local mesh m, source node

s = (s0, s1, s2), and destination node t = (t0, t1, t2)
Output: a fault-free path P = (s→ t) or report failure
begin

P = φ;
r = s;
dir0 = dir1 = dir2 = 1; /* determine routing direction */
if (0 ≤ r0 − t0 ≤ n/2) OR (0 ≤ t0 − r0 > n/2) dir0 = −1;
if (0 ≤ r1 − t1 ≤ n/2) OR (0 ≤ t1 − r1 > n/2) dir1 = −1;
if (0 ≤ r2 − t2 ≤ n/2) OR (0 ≤ t2 − r2 > n/2) dir2 = −1;
for i = 0, 1, 2 do /* for each dimension i */

/* determine mesh boundaries of i and j dimensions */
j = (i+ 1) mod 3; /* dimension j */
k = (j + 1) mod 3; /* dimension k */
bj = (rj − dirj + n) mod n; /* [bj , Bj ] in dimension j */
bk = (rk − dirk + n) mod n; /* [bk, Bk] in dimension k */
Bj = (rj + (m− 2)× dirj + n) mod n;
Bk = (rk + (m− 2)× dirk + n) mod n;
while ri 6= ti do

/* determine mesh boundaries of i dimension */
bi = ri; /* [bi, Bi] in dimension i */
Bi = (ri + (m− 1)× diri + n) mod n;
if t is in mesh

if there is a fault-free path P ′ = (r → t) in mesh
P = P ∪ P ′;
return P ; /* path constructed */

else return failure; /* failed */
else

if there is a fault-free path P ′ = (r → r′) in mesh
such that (r′i = Bi) OR (r′i = ti)
P = P ∪ P ′;
r = r′; /* continue */

else return failure; /* failed */
endwhile

endfor
end

In Algorithm 1, we route source node s = (s0, s1, s2) to
destination node t = (t0, t1, t2) through a tube of 3 pipes.
A pipe consists of a sequence of boxes (3D m-meshes). A
box is uniquely determined with two nodes: b and B.

If routing in the first pipe succeeds, a node
r = (t0, r1, r2) will be reached where r1 and r2 are
in the m-square bounded by b0, b1, B0, and B1. The path

(s → r) may goes through several boxes. To route in a
box, we can use any search algorithm, depth-first search
(DFS) or breadth-first search (BFS) algorithm for in-
stance. If all three dimensions are routed successfully, a
fault-free path (s → t) is found. Whenever the local rout-
ing in a box fails, the algorithm reports a failure and termi-
nates.

The running time of the algorithm isO(n), assuming that
the local routing inside a small local 3D m-mesh takes con-
stant time. We summarize this result into the following the-
orem.

Theorem 2. The Tube Routing algorithm will terminate in
O(n) time. When the algorithm terminates, it either gener-
ates a fault-free path from s to t or reports that the path
cannot be found.

4. Adaptive Box Routing Algorithm

In this section, we describe another local-information-
based, fault-tolerant routing algorithm, called Adap-
tive Box Routing. The idea is as follows. Instead of ar-
ranging the sequence of m-meshes as a tube that encloses
the shortest path generated by the dimension-order rout-
ing, a sequence of boxes is found recursively such that
the routing direction of each box should be along the di-
mension i such that the distance d(ri, ti) is a maximum,
where r is the new source node after a local routing. In-
tuitively, the sequence of boxes is arranged to enclose a
ladder-shaped shortest path, instead of a dimension-order
shortest path. Each box should also adapt itself such that
the new source node r and the path segment along dimen-
sion i should be enclosed inside the box.

B

b

r

Rou
tin

g

dir
ec

tio
n

B

b

r

Rou
tin

g

dir
ec

tio
n

(a) k = 3 (b) k = 4

i
j

k

Figure 2. Routing with boxes

To describe the algorithm, we need a notation to show the
position of an m-mesh inside T . Referring to Figure 2, we
associate each node r in T with a unique 3D m-mesh Mr



to be used by the algorithm. The Mr is determined by two
nodes b and B, representing the lower-corner node b and an
upper-corner node B of the two 2D meshes along the di-
mension of the current pipe, respectively.

More precisely, let i be the dimension of the current
pipe, and dirj and dirk be the unit directions (+1 or -1)
of the shortest path along dimensions j and k. Then, we
have bi = ri, bj = rj − dirj , and bk = rk − dirk, and
Bi = ri − (m − 1) × diri, Bj = rj − (m − 2) × dirj ,
and Bk = rk − (m − 2) × dirk (all arithmetics are mod-
ulo n).

The proposed recursive algorithm is similar to that of the
tube approach. The difference is that the box is adaptable in
all dimensions instead of just in the dimension of the cur-
rent pipe. Let r = s. The algorithm first determines the rout-
ing dimension i and the local 3Dm-meshMr, and then per-
forms local routing in Mr that routes node r to a nonfaulty
node r′, a node located at the opposite boundary ofMr from
r along the ith dimension. If the local routing r → r′ suc-
cesses then we consider r′ as a new source r and route from
r recursively. If the local routing fails, the algorithm termi-
nates unsuccessfully and reports a failure. The algorithm is
formally specified as in Algorithm 2.

Next, we show that the algorithm will terminate in O(n)
time, and either finds a fault-free path from s to t or reports
a failure. When m > 3, we show in the following theo-
rem that the algorithm will terminate in O(n) time. How-
ever, for m = 3, the node r becomes the center of the
2D m-mesh it locates. It is possible that the local routing
within the box will not make progress. For example, if r′ =
(ri + 2× diri, rj − dirj , rk − dirk) then d(r, t) = d(r′, t)
and the algorithm does not make any progress. Therefore,
the proposed routing algorithm should provide a checking
for such kind of local routing. We allow at most three con-
secutive non-progress steps in the algorithm for m = 3.

Theorem 3. Adaptive Box Routing algorithm terminates
in O(n) time, and either outputs a fault-free path from
source s to destination t or reports a failure.

Proof We first show that, form > 3, the local routing al-
ways makes progress toward destination t. Since the box
Mr for node r is constructed in the way that the farthest
corner node B is toward t. That is, B = (ri + (m − 1) ×
diri, rj + (m− 2)× dirj , rk + (m− 2)× dirk). The worst
case is that r is routed to r′ = (ri + (m − 1) × diri, rj −
dirj , rk−dirk). Since d(r, t)−d(r′, t) = (m−1) + 2 > 0
for m > 3, the local routing always makes progress toward
t. For m = 3, we restrict the consecutive local routings that
do not make progress at most three times. Therefore, the al-
gorithm will terminate with at most 3d(s, t) = O(n) local
routings. For fixed m, the running time for the local rout-
ing is a constant. Therefore, the total running time of the al-
gorithm is O(n).

Algorithm 2 (Adaptive Box Routing(Tn,m, s, t))
Input: 3D n-torus Tn, size of local mesh m, source node

s = (s0, s1, s2), and destination node t = (t0, t1, t2)
Output: a fault-free path P = (s→ t) or report failure
begin

P = φ;
r = s;
count = 0;
while r 6= t do

dir0 = dir1 = dir2 = 1; /* determine routing direction */
if (0 ≤ r0 − t0 ≤ n/2) OR (0 ≤ t0 − r0 > n/2) dir0 = −1;
if (0 ≤ r1 − t1 ≤ n/2) OR (0 ≤ t1 − r1 > n/2) dir1 = −1;
if (0 ≤ r2 − t2 ≤ n/2) OR (0 ≤ t2 − r2 > n/2) dir2 = −1;
Find the dimension i so that the distance between ri and ti

d(ri, ti) = max(d(r0, t0), d(r1, t1), d(r2, t2));
/* determine mesh boundary [b, B], referring to Figure 2 */
j = (i+ 1) mod 3; /* dimension j */
k = (j + 1) mod 3; /* dimension k */
bi = ri; /* [bi, Bi] in dimension i */
bj = (rj − dirj + n) mod n; /* [bj , Bj ] in dimension j */
bk = (rk − dirk + n) mod n; /* [bk, Bk] in dimension k */
Bi = (ri + (m− 1)× diri + n) mod n;
Bj = (rj + (m− 2)× dirj + n) mod n;
Bk = (rk + (m− 2)× dirk + n) mod n;
if t is in mesh bounded by [b, B]

if there is a fault-free path P ′ = (r → t) in mesh
P = P ∪ P ′;
return P ; /* path constructed */

else return failure; /* failed */
else

if (count ≤ 3 and there is a fault-free path P ′ = (r → r′)
in mesh such that (r′i = Bi) OR (r′i = ti))
P = P ∪ P ′;
if (d(r, t) = d(r′, t))

count = count+ 1;
else count = 0;
r = r′; /* continue */

else return failure; /* failed */
endwhile

end

5. Heuristic Box Routing Algorithm

In this section, we make an effort to improve the perfor-
mance of Adaptive Box Routing algorithm by allowing the
routing to continue when the local routing along the dimen-
sion of the longest distance, say i, fails.

In the new algorithm, the routing continues by trying the
local routings in the boxes set along the other two dimen-
sions (the dimension with larger distance goes first) under
the condition that the distance between r and t along that
dimension is greater than 1. If the distance between r and
t along the chosen dimension, say j, d(rj , tj) < m − 1
then the local routing will route r to r′, where d(rj , r′j) =
d(rj , tj) > 1.

Once the local routing along the dimension j that
d(rj , tj) is not an maximum successes, the box for the new
source should be arranged along dimension i again. The al-
gorithm that adds this heuristic strategy to the Adap-
tive Box Routing is called Heuristic Box routing. In
the next theorem, we show that Heuristic Box rout-
ing works.



Theorem 4. Heuristic Box Routing algorithm terminates
in O(n) time, and either outputs a fault-free path from s to
t or reports a failure.

Proof Similar to that in theorem 3, we show that the
number of the additional local routings is at most O(n).
Starting from r = s, there are two cases:

1. d(rj , tj) > 2: in this case, the algorithm always makes
progress as it has been shown in theorem 3.

2. d(rj , tj) = 2: in this case, r′ might not make any
progress, that is, d(r′, t) = d(r, t) (the distance toward
t along other two dimensions 6= j goes one step back-
ward within the box). However, routing along dimen-
sion j is done at most once in the algorithm for each
source node. The O(n) bound is still valid in this case.

In any case, the number of local routings is O(n). For
fixed m, the running time for the local routing is a constant.
Therefore, the running time of the algorithm is O(n).

6. Simulation Results

We have performed a set of simulations on the perfor-
mance of the proposed algorithms: Tube Routing, Adap-
tive Box Routing, and Heuristic Box Routing. We focused
on the successful routing rates of the algorithms for the 3D
torus networks with different node faulty probabilities. The
comparison of the successful routing rates of the algorithms
are performed. We also presented the path length for the
Adaptive Box Routing algorithm.

We have tested for the dimensions n = 12, 16 and
20. For each dimension, we have tested the m-mesh-
connectivity for m = 3 and 4. For the fault model, we
use uniform distribution of node failures. That is, each
node has an equal and independent failure probabil-
ity pf . We let pf vary from 10% to 50% with a 10%
increment. For each case, we simulate 10,000 times.

The simulation results of the successful routing rate and
the length of the routing path for the set of parameters spec-
ified above are shown in the figures below. Because there
are too many curves if we put all results in a single figure,
we plotted them in separated figures.

Figure 3 plots the successful routing rate of the simplest
algorithm, Tube Routing, where the two numbers in brack-
ets are n and m, respectively. We can see that, when the
node failure probability is small, i.e., pf = 10%, the suc-
cessful routing rates are almost 100% for both m = 3 and
4. For a given n, increasingm improves the successful rout-
ing. On the other hand, for a given m, routing in a small
torus has higher successful routing rate than that in a large
torus.

Figure 4 shows the successful routing rate of the Adap-
tive Box Routing algorithm. From the figure, we can see
that, when the node failure probability pf ≤ 20%, the

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

R
at

e
of

su
cc

es
sf

ul
ro

ut
in

g
p
s

(%
)

Probability of node failures pf (%)

(12, 4)
(16, 4)
(20, 4)
(12, 3)
(16, 3)
(20, 3)

Figure 3. The successful routing rate of
Tube Routing

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

R
at

e
of

su
cc

es
sf

ul
ro

ut
in

g
p
s

(%
)

Probability of node failures pf (%)

(12, 4)
(16, 4)
(20, 4)
(12, 3)
(16, 3)
(20, 3)

Figure 4. The successful routing rate of
Adaptive Box Routing

successful routing rates are almost 100% for both m = 3
and 4. Figure 5 shows the performance improvement of the
adaptive-box algorithm compared to that of the tube algo-
rithm. From the figure, we conclude that the adaptive-box
approach are better than the tube approach in most of the
cases.



100

105

110

115

120

125

130

135

140

145

150

0 10 20 30 40 50

Im
pr

ov
em

en
t(

%
)

Probability of node failures pf (%)

(20, 3)
(16, 3)
(12, 3)
(20, 4)
(16, 4)
(12, 4)

Figure 5. The successful improvement rate of
Adaptive Box Routing v.s. Tube Routing

100

105

110

115

120

125

130

0 10 20 30 40 50

Pa
th

pl
us

(%
)

Probability of node failures pf (%)

(12, 4)
(16, 4)
(20, 4)
(12, 3)
(16, 3)
(20, 3)

Figure 6. Path plus of Adaptive Box Routing

The successful improvement rate in Figure 5 is defined
as

Successful routing rate of box algorithm
Successful routing rate of tube algorithm

When n is small and m is large, n = 12 and m = 4 for in-
stance, the box algorithm is not much better than the tube
algorithm. However, when m is smaller, especially as n
increases, the successful improvement rate of the box al-

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

R
at

e
of

su
cc

es
sf

ul
ro

ut
in

g
p
s

(%
)

Probability of node failures pf (%)

(12, 4)
(16, 4)
(20, 4)
(12, 3)
(16, 3)
(20, 3)

Figure 7. The successful routing rate of
Heuristic Box Routing

100
110
120
130
140
150
160
170
180
190
200
210
220

0 10 20 30 40 50

Im
pr

ov
em

en
t(

%
)

Probability of node failures pf (%)

(20, 3)
(16, 3)
(12, 3)
(20, 4)
(16, 4)
(12, 4)

Figure 8. The successful improvement
rate of Heuristic Box Routing v.s. Adap-
tive Box Routing

gorithm grows obviously. As an example, when m = 3,
n = 20, and there are half faulty nodes, the successful im-
provement rate is 1.54. For fixed n, using a larger box will
have a better performance with a cost of increasing time
complexity at a rate that is a cubic function of m.



100
110
120
130
140
150
160
170
180
190
200
210
220
230

0 10 20 30 40 50

Im
pr

ov
em

en
t(

%
)

Probability of node failures pf (%)

(20, 5)
(16, 5)
(12, 5)
(20, 4)
(16, 4)
(12, 4)

Figure 9. The successful improvement rates
of m = 4 and 5 v.s. m = 3 for Adap-
tive Box Routing

Figure 6 displays the path plus of the box algorithm,
which is calculated by

Path plus =
Path length of P = (s→ t)

Distance between s and t

Figure 7 plots the successful routing rate of the heuris-
tic box routing algorithms. From the figure, we can see that,
when the node failure probability pf ≤ 30%, the success-
ful routing rates are almost 100% for both m = 3 and
4. Figure 8 depicts the improvement of successful routing
rate gained by using the heuristic box routing algorithms to
that of box algorithm. The improvement is significant, es-
pecially when m is small. As an example, when m = 3,
n = 20, and there are half faulty nodes, the successful im-
provement rate is 2.34. It is worth to adopt those routing al-
gorithms when the probability of faulty nodes is high.

Figure 9 shows the successful improvement rate of m =
4 and 5 against m = 3, for Adaptive Box Routing. For
practical reason, we consider small m only as we assume
that the time of routing within an m-mesh is a constant.

7. Conclusions

In this paper, we first presented a concept of local-safety
for a kD n-torus. Then, we proposed two different ap-
proaches for fault-tolerant routing in a 3D n-torus with pos-
sible large and arbitrarily faulty nodes. The algorithms are
online (only local information is used) and efficient (O(n)

time assuming that the local routing is O(1)). The simula-
tion results show that the rates of successful routing of the
algorithms are quite high considering that there are only six
links for each node in a 3D torus. The possible directions of
the further research include

1. Analyze the performance of the proposed algorithms
theoretically;

2. Apply the similar approaches to other practical inter-
connection networks; and

3. Investigate the important issues (e.g., deadlock-free)
while implement the proposed routing algorithms on
some switching models.

References

[1] L. D. Aronson. Homogeneous routing for homogeneous traf-
fic patterns on meshes. IEEE Transactions on Parallel and
Distributed Systems, 11(8):781–793, August 2000.

[2] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa,
P. Heidelberger, S. Singh, B. Steinmacher-Burow, T. Takken,
and P. Vranas. Design and analysis of the bluegene/l
torus interconnection network. IBM Research Report,
http://www.research.ibm.com/bluegene/, December 2003.

[3] R. V. Boppana and S. Chalasani. Fault-tolerant wormhole
routing algorithms for mesh networks. IEEE Transactions
on Computers, 44(7):848–864, July 1995.

[4] S. Chalasani and R. V. Boppana. Fault-tolerant wormhole
routing in tori. IEE Proc.: Computers and Digital Tech-
niques, 142(11):386–394, Nov 1995.

[5] J. Chen, G. Wang, and S. Chen. Routing in hypercube net-
works with a constant fraction of faulty nodes. Journal of
Interconnection Networks, 2(3):283–294, September 2001.

[6] J. Chen, G. Wang, and S. Chen. Locally subcube-connected
hypercube networks: Theoretical analysis and experimental
results. IEEE Transactions on Computers, 51(5):530–540,
May 2002.

[7] Q.-P. Gu and S. Peng. Fault tolerant routing in toroidal net-
works. IEICE Transactions on Information and Systems, E-
79D:1153–1159, August 1996.

[8] Q.-P. Gu and S. Peng. Unicast in hypercubes with large num-
ber of faulty nodes. IEEE Transactions on Parallel and Dis-
tributed Systems, 10:964–975, October 1999.

[9] C. Inc. Cray xt3 supercomputer.
http://www.cray.com/products/xt3/index.html, 2004.

[10] M.-J. Tsai and S.-D. Wang. Adaptive and deadlock-free
routing for irregular faulty patterns in mesh multicomput-
ers. IEEE Transactions on Parallel and Distributed Systems,
11(1):50–63, January 2000.

[11] J. Wu. Fault-tolerant adaptive and minimal routing in
mesh-connected multicomputers using extended safety level.
IEEE Transactions on Parallel and Distributed Systems,
11(2):149–159, February 2000.

[12] D. Xiang. Fault-tolerant routing in hypercube multicomput-
ers using local safety information. IEEE Transactions on
Parallel and Distributed Systems, 12(9):942–951, Septem-
ber 2001.


