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Abstract. In this paper, we propose an efficient algorithm for paral-
lel prefix computation in recursive dual-net, a newly proposed network.

The recursive dual-net RDNk(B) for k > 0 has (2n0)2k/2 nodes and
d0 + k links per node, where n0 and d0 are the number of nodes and the
node-degree of the base network B, respectively. Assume that each node
holds one data item, the communication and computation time complex-
ities of the algorithm for parallel prefix computation in RDNk(B), k > 0,
are 2k+1 − 2 + 2k ∗ Tcomm(0) and 2k+1 − 2 + 2k ∗ Tcomp(0), respectively,
where Tcomm(0) and Tcomp(0) are the communication and computation
time complexities of the algorithm for parallel prefix computation in the
base network B, respectively.

Keywords. Interconnection networks, algorithm, parallel prefix compu-
tation

1 Introduction

In massively parallel processor (MPP), the interconnection network plays a cru-
cial role in the issues such as communication performance, hardware cost, com-
putational complexity, fault-tolerance. Much research has been reported in the
literature on interconnection networks that can be used to connect parallel com-
puters of large scale (see [1–3] for the review of the early work).

The following two categories have attracted a great research attention. One is
the networks of hypercube-like family that have the advantage of short diameters
for high-performance computing and efficient communication [4–8]. The other is
the networks of 2D/3D meshes or tori that have the advantage of small and
fixed node-degrees and easy implementations. Traditionally, most MPPs in the
history including those built by NASA, CRAY, FGPS, IBM, use 2D/3D meshes
or tori or their variations with extra diagonal links.



Recursive networks also have been proposed as effective interconnection net-
works for parallel computers of large scale. For example, the WK-recursive net-
work [9, 10] is a class of recursive scalable networks. It offers a high-degree of
regularity, scalability, and symmetry and has a compact VLSI implementation.

Recently, due to advances in computer technology and competition among
computer makers, computers containing hundreds of thousands of nodes have
been built [11]. It was predicted that the MPPs of the next decade will contain
10 to 100 millions of nodes [12]. For such a parallel computer of very-large scale,
the traditional interconnection networks may no longer satisfy the requirements
for the high-performance computing or efficient communication.

For future generations of MPPs with millions of nodes, the node-degree and
the diameter will be the critical measures for the effectiveness of the intercon-
nection networks. The node-degree is limited by the hardware technologies and
the diameter affects all kinds of communication schemes directly. Other im-
portant measures include bisection bandwidth, scalability, and efficient routing
algorithms.

In this paper, we first describe a newly proposed network, called Recursive
Dual-Net (RDN). The RDN is based on recursive dual-construction of a regular
base-network. The dual-construction extends a regular network with n nodes and
node-degree d to a network with 2n2 nodes and node-degree d + 1. The RDN
is especially suitable for the interconnection network of the parallel computers
with millions of nodes. It can connect a huge number of nodes with just a small
number of links per node and very short diameters. For example, a 2-level RDN
with 5-ary, 2-cube as the base-network can connect more than 3-million nodes
with only 6 links per node and its diameter equals to 22. The major contribution
of this paper is to design efficient algorithm for parallel prefix computation in
RDN.

The prefix computation is fundamental to most of numerical algorithms. Let
⊕ be an associative binary operation. Given n numbers c0, c1, . . . , cn−1, prefix
computation is to compute all of the prefixes of the expression c0⊕ c1 . . .⊕ cn−1.

The rest of this paper is organized as follows. Section 2 describes the recursive
dual-net in details. Section 3 describes the proposed algorithm for parallel prefix
computation in RDN. Section 4 concludes the paper and presents some future
research directions.

2 Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted as |G|, is the number of
vertices. A path from node s to node t in G is denoted by s→ t. The length of
the path is the number of edges in the path. For any two nodes s and t in G, we
denote L(s, t) as the length of a shortest path connecting s and t. The diameter
of G is defined as D(G) = max{L(s, t)|s, t ∈ G}.

For any two nodes s and t in G, if there is a path connecting s and t, we say
G is a connected graph. Suppose we have a symmetric connected graph B and



there are n0 nodes in B and the node degree is d0. A k-level Recursive Dual-Net
RDNk(B), also denoted as RDNk(B(n0)), can be recursively defined as follows:

1. RDN0(B) = B is a symmetric connected graph with n0 nodes, called base
network;

2. For k > 0, an RDNk(B) is constructed from RDNk−1(B) by a dual-
construction as explained below (also see Figure 1).
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Fig. 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as a cluster of level k and
nk−1 = |RDNk−1(B)| for k > 0. An RDNk(B) is a graph that contains 2nk−1

clusters of level k as subgraphs. These clusters are divided into two sets with
each set containing nk−1 clusters. Each cluster in one set is said to be of type
0, denoted as C0

i , where 0 ≤ i ≤ nk−1 − 1 is the cluster ID. Each cluster in the
other set is of type 1, denoted as C1

j , where 0 ≤ j ≤ nk−1 − 1 is the cluster ID.
At level k, each node in a cluster has a new link to a node in a distinct cluster
of the other type. We call this link cross-edge of level k. By following this rule,
for each pair of clusters C0

i and C1
j , there is a unique edge connecting a node

in C0
i and a node in C1

j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there are nk−1 nodes
within each cluster RDNk−1(B).

We give two simple examples of recursive dual-nets with k = 1 and 2, in which
the base network is a ring with 3 nodes, in Figure 2 and Figure 3, respectively.
Figure 2 depicts an RDN1(B(3)) network. There are 3 nodes in the base network.
Therefore, the number of nodes in RDN1(B(3)) is 2×32, or 18. The node degree
is 3 and the diameter is 4.

Figure 3 shows the RDN2(B(3)) constructed from the RDN1(B(3)) in Fig-
ure 2. We did not show all the nodes in the figure. The number of nodes in
RDN2(B(3)) is 2× 182, or 648. The node degree is 4 and the diameter is 10.



Fig. 2. A Recursive Dual-Net RDN1(B(3))

Fig. 3. A Recursive Dual-Net RDN2(B(3))

Similarly, we can construct an RDN3(B(3)) containing 2× 6482, or 839,808
nodes with node degree of 5 and diameter of 22. In contrast, the 839,808-node
3D torus machine (adopt by IBM Blue Gene/L [13]) configured as 108×108×72
nodes, the diameter is equal to 54 + 54 + 36 = 144 with a node degree of 6.

We can see from the recursive dual-construction described above that an
RDNk(B) is a symmetric regular network with node-degree d0 + k if the base
network is a symmetric regular network with node-degree d0. The following
theorem is from [14].

Theorem 1. Assume that the base network B is a symmetric graph with size
n0, node-degree d0, and the diameter D0. Then, the size, the node-degree, the
diameter and the bisection bandwidth of RDNk(B) are (2n0)2k/2, d0+k, 2kD0+
2k+1 − 2, and d(2n0)2k/8e, respectively.

The cost ratio CR(G) for measuring the combined effects of the hardware
cost and the software efficiency of an interconnection network was also proposed
in [14]. Let |(G)|, d(G), and D(G) be the number of nodes, the node-degree, and
the diameter of G, respectively. We define CR(G) as

CR(G) = (d(G) +D(G))/ lg |(G)|



The cost ratio of an n-cube is 2 regardless of its size. The CR for some
RDNk(B) is shown in Table 1. Two small networks including 3-ary 3-cube and
5-ary 2-cube are selected as practical base networks. For INs of size around 1K,
we set k = 1, while for INs of size larger 1M, we set k = 2. The results show
that the cost ratios of RDNk(B) are better than hypercubes and 3D-tori in all
cases.

Table 1. CR for some RDNk(B)

Network n d D CR

10-cube 1,024 10 10 2.00

RDN1(B(25)) 1,250 5 10 1.46

RDN1(B(27)) 1,458 7 8 1.43

3D-Tori(10) 1,000 6 15 2.11

22-cube 4,194,304 22 22 2.00

RDN2(B(25)) 3,125,000 6 22 1.30

RDN2(B(27)) 4,251,528 8 18 1.18

3D-Tori(160) 4,096,000 6 240 11.20

A presentation for RDNk(B) that provides an unique ID to each node in
RDNk(B) is described as follows. Let the IDs of nodes in B, denoted as ID0, be
i, 0 ≤ i ≤ n0−1. The IDk of node u in RDNk(B) for k > 0 is a triple (u0, u1, u2),
where u0 is a 0 or 1, u1 and u2 belong to IDk−1. We call u0, u1, and u2 typeID,
clusterID, and nodeID of u, respectively. With this ID presentation, (u, v) is a
cross-edge of level k in RDNk(B) iff u0 6= v0, u1 = v2, and u2 = v1. In general,
IDi, 1 ≤ i ≤ k, can be defined recursively as follows: IDi = (b, IDi−1, IDi−1),
where b = 0 or 1. A presentation example is shown in Figure 4.
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Fig. 4. RDN1(B(3)) presentation



The ID of a node u in RDNk(B) can also be presented by an unique integer
i, 0 ≤ i ≤ (2n0)2k/2 − 1, where i is the lexicographical order of the triple
(u0, u1, u2). For example, the ID of node (1, 1, 2) in RDN1(B(3)) is 1 ∗ 32 + 1 ∗
3 + 2 = 14 (see figure 5). The ID of node (1,(0,2,2),(1,0,1)) in RDN2(B(3)) is
1 ∗ 182 + 8 ∗ 18 + 10 = 324 + 144 + 10 = 478.
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Fig. 5. RDN1(B(3)) with integer node ID

3 Parallel Prefix Computation in Recursive Dual-net

Let ⊕ be an associative binary operation. Given n numbers c0, c1, . . . , cn−1,
parallel prefix computation [15, 16] is defined as simultaneously evaluating all of
the prefixes of the expression c0⊕c1 . . .⊕cn−1. The ith prefix is si = c0⊕c1 . . .⊕
ci−1.

The parallel prefix computation can be done efficiently in recursive dual-net.
Assume that each node i, 0 ≤ i ≤ nk − 1, in an RDNk(B) holds a number ci.
Let xi and yi are local variables in node i that will hold prefixes and total sum at
the end of the algorithm. The algorithm for parallel prefix (or diminished prefix
which excludes ci in si) computation in RDNk(B) is a recursive algorithm on
k. We assume that the algorithm RDN prefix(B, c, b) for prefix and diminished
prefix computation in the base network (b = 1 for prefix and b = 0 for diminished
prefix) is available. We describe it briefly below.

First, through a recursive call for every cluster of level k, we calculate the
local prefix xi and the local sum yi in node i, where local prefix and local sum
are the prefixes and the sum on the data items in each cluster of level k. To
get the prefix of the data items in other clusters, we calculate the diminished
prefix of all local sums of the clusters of the same type. This can be done by
transferring the local sum to its neighbor via the cross-edge of level k, and then
the prefix x′i and the sum y′i of all local sums of the same type can be computed
by the nodes in every cluster of the other type via a recursive call.

After the second recursive call, the missing parts of the prefixes are ready
for the nodes in clusters of type 0. Then, these values are transferred back to
the nodes in the cluster of the original type via the cross-edge of level k and
are added to its own local prefix. Finally, the algorithm adds the sum y′i of data



items in the nodes in clusters of type 0 to the current prefix of every node j in
cluster of type 1. Notice that the value y′i exists in every node j in the clusters
of type 1 when the second recursive call is done.

The details are specified in Algorithm 1. Examples of prefix sum inRDN1(B)
and RDN2(B) are shown in Figure 6 and Figure 7, respectively.

Algorithm 1: RDN prefix(RDNk(B), c, b)
Input: Recursive dual-net RDNk(B), an array of keys c with |c| = nk, and a boolean
variable b. Assume that node i holds ci.
Output: node i holds xi = c0 ⊕ c1 . . .⊕ c[i] if b = 1, c0 ⊕ c1 . . .⊕ ci−1 otherwise
begin

if k = 0 then RDN prefix(B, c, b)
/* Assume that RDN prefix(B, c, b) is available. */
else

for RDNk−1
j (B), 0 ≤ j ≤ nk−1 − 1, parallel do

/* j is the cluster ID. */
RDN prefix(RDNk−1

j (B), c, b);
/* The values xi and yi at node i are the local

prefix and the local sum in the clusters of
level k. */

for node i, 0 ≤ i ≤ nk − 1, parallel do
send yi to node i′ via cross-edge of level k;
tempi ← yi′ ;

for RDNk−1
j (B), 0 ≤ j ≤ nk−1 − 1, parallel do

RDN prefix(RDNk−1
j (B), temp, 0);

/* Compute the diminished prefix of temp */
/* The results are denoted as x′i and y′i. */

for node i, 0 ≤ i ≤ nk − 1, parallel do
send x′i to node i′ via cross-edge of level k;
tempi ← x′i′ ;
si ← si ⊕ tempi;

for node i, nk/2 ≤ i ≤ nk − 1, parallel do
si ← si ⊕ y′i;

endif
end

Theorem 2. Assume 1-port, bidirectional-channel communication model. As-
sume also that each node holds a single data item. Parallel prefix computation
in recursive dual-net RDNk(B), k > 0, can be done in 2k+1 − 2 + 2k ∗ Tcomm(0)
communication steps and 2k+1 − 2 + 2k ∗ Tcomp(0) computation steps, where
Tcomm(0) and Tcomp(0) are communication and computation steps for prefix
computation in the base network, respectively.

Proof. At Step 1, the local prefix in each cluster of level k is computed. At
Steps 2 - 4, The part of the prefix located in other clusters of the same type is
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(a) Presentation of RDN1(B(3))

Fig. 6. Example of prefix sum in RDN1(B(3))

computed. Finally, at Step 5, for clusters of type 1, part of the prefix located in
the clusters of type 0 is added to the nodes in the cluster of type 1. It is easy to
see the correctness of the algorithm.

Next, we assume that the edges in RDNk(B) are bidirectional channels, and
at each clock cycle, each node in Dn can send or get at most one message. In
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Fig. 7. Example of prefix sum in RDN2(B(3))

Algorithm 1, Step 1 and Step 3 are recursive calls, Step 2 and Step 4 involve
one communication step each. Therefore, the complexity for communication sat-
isfies recurrence Tcomm(k) = 2Tcomm(k − 1) + 2. Solving the recurrences, we
get Tcomm(k) = 2k+1 − 2 + 2k ∗ Tcomm(0). Similarly, Steps 4 and 5 involve one



computation step each. The recurrence for computation time satisfies the same
concurrence.

Therefore, we conclude that the prefix computation in RDNk(B) for k > 0
can be done in 2k+1 − 2 + 2k ∗ Tcomm(0) communication steps and 2k+1 + 2k ∗
Tcomp(0) computation steps, where Tcomm(0) and Tcomp(0) are communication
and computation steps for prefix computation in the base network, respectively.
ut

Extension of the parallel prefix algorithm to the general case where each
node initially holds more than one data item is straightforward. Let the size of
array c be m > n. The algorithm consists of three stages: In the first stage, each
node do a prefix computation on its own data set of size m/n sequentially; In
the second stage, the algorithm performs a diminished parallel computation on
the RDN as describe in Algorithm 1 with b = 0 and ci equals to the local sum;
In third stage, for each node, the algorithm combines the result from this last
computation with the locally computed prefixes to get the final result. We show
the parallel prefix computation for the general case in theorem 3.

Theorem 3. Assume 1-port, bidirectional-channel communication model. As-
sume also that the size of the input array is m, and each node holds m/nk
numbers. Parallel prefix computation in recursive dual-net RDNk(B), k > 0,
can be done in 2k+1 − 2 + 2k ∗ Tcomm(0) communication steps and 2m/nk +
2k+1 − 3 + 2k ∗ Tcomp(0) computation steps, where Tcomm(0) and Tcomp(0) are
communication and computation steps for prefix computation in the base net-
work with each node holds one single number, respectively.

Proof. The first and the third stages of the algorithm contains only local compu-
tations inside each node and the total number of computations are (m/nk)− 1
and m/nk, respectively. In the second stage, the algorithm performs parallel
prefix computation in RDN with each node holding a single number. Follow-
ing Theorem 1, it requires 2k+1 − 2 + 2k ∗ Tcomm(0) communication steps and
2k+1−2+2k ∗Tcomp(0) computation steps. Therefore, we conclude that the par-
allel prefix computation of array of size m > nk in RDNk(B) requires 2k+1 −
2 + 2k ∗ Tcomm(0) communication steps and (2m/nk + 2k+1 − 3) + 2k ∗ Tcomp(0)
computation steps. ut

4 Concluding Remarks

In this paper, we showed an efficient algorithm for parallel prefix computation
in recursive dual-net. Recursive dual-net is a potential candidate for the super-
computers of next generations. It has many interesting properties that are very
attractive as an interconnection network of massively parallel computer. Design
efficient algorithms for basic computational problems in an interconnection net-
work is an important issue. The further research will include design of efficient
searching and sorting algorithms for recursive dual-net.
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