
An Efficient Parallel Sorting Algorithm on Metacube
Multiprocessors

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science
Hosei University

Tokyo 184-8584 Japan
{yamin, speng}@k.hosei.ac.jp

2 Department of Computer Hardware
University of Aizu

Aizu-Wakamatsu 965-8580 Japan
w-chu@u-aizu.ac.jp

Abstract. Parallel sorting algorithms in hypercubes have been studied exten-
sively. One of the practical parallel sorting algorithms is Bitonic Sort, which is
implemented in O(n2) time for sorting N = 2n numbers in an n-cube. A versa-
tile family of interconnection networks alternative to hypercube, called metacube,
was proposed for building extremely large scale multiprocessor systems with a
small number of links per node. A metacube MC(k,m) connects 22km+k nodes
with only k + m links per node. In this paper, we present an efficient sorting
algorithm on metacube multiprocessors. The proposed sorting algorithm is based
on the Batcher’s bitonic sorting algorithm. In order to perform the parallel sort-
ing efficiently in metacube, we give a new presentation of the metacube such
that the communications required by the algorithm can be done efficiently with
gather and scatter operations. The parallel bitonic sort algorithm implemented in
metacubes with the new presentation runs in O(2km + k)2 computation steps
and O(2km(2k + 1) + k)2 communication steps.

Keywords. Parallel algorithm, sort algorithm, hypercube, metacube

1 Introduction

The supercomputers consisting of hundreds of thousands nodes have been built recently.
In near future, the number of nodes in a parallel system will reach to several millions.
How to connect these large number of nodes is an important issue for achieving high
performance of the supercomputers. A good interconnection network should use a small
number of links and meanwhile keep the diameter as shorter as possible.

Hypercube is an interest interconnection network and is used in many supercom-
puters [3, 12, 13]. An n-dimensional hypercube, or n-cube, connects N = 2n nodes
with n links per node: There is a link between two nodes whose n-bit binary addresses
differ in a single bit position. However, the number of links increases logarithmically as
the number of nodes in the system increases. A system with several millions of nodes
requires each node to have more than 20 links if hypercube is applied as the intercon-
nection network.



In order to reduce the required number of links per node while keeping the hy-
percube properties in a very large supercomputer, the metacube (MC) has been intro-
duced [8, 9]. An MC(k,m) network can connect 22km+k nodes with m + k links per
node, where k is the dimension of the high-level cubes (classes) andm is the dimension
of the low-level cubes (clusters). For example, an MC(3,3) with 6 links per node can
connect 227, or 134,217,728, nodes. A metacube can be implemented to a dual-cube
(k = 1), a quad-cube (k = 2), an oct-cube (k = 3), or a hex-cube (k = 4). Rao
and Chalamaiah gave routing and broadcasting algorithms for metacubes [11]; Jiang
and Wu presented fault-tolerant routing in dual-cubes [4]; Wu and Wu showed the self-
similarity and hamiltonicity of dual-cubes and gave the VLSI layout of dual-cubes [14];
Laia and Tsai embedded cycles into faulty dual-cubes [6]; Chen and Kao extended dual-
cube idea to a dual-cube extensive network [2].

Sorting is an important component of many applications. The parallel sorting al-
gorithms have been studied extensively. Batcher’s O(n2)-time bitonic sorting algo-
rithm [1] for sorting N = 2n numbers is presently the practical deterministic sort-
ing algorithm designed specially for parallel machines. Deterministic means that the
sequence of comparisons is not data-dependent. More complicated O(n log n)-time al-
gorithms are not competitive to bitonic algorithm for n < 20 and are complex for the
implementation on parallel machines [7, 10].

In this paper, we present a new parallel sorting algorithm on metacube multiproces-
sors which may consist of a very large number of nodes. The new sorting algorithm is
based on bitonic sort on hypercubes. In order to perform the parallel sorting efficiently,
we give a new presentation of the metacube that is class-based so that the communica-
tions between node pairs can be done more efficiently than the original cluster-based
presentation. We also show how to use gather and scatter operations to speedup the
communications in metacubes that are required by the algorithm.

2 Bitonic Sorting on Hypercube

Bitonic sort is based on repeatedly merging two bitonic sequences to form a larger
bitonic sequence. A bitonic sequence is a sequence of values (a0, a1, . . . , an−1) with
the property that either (1) there exists an index i, where 0 ≤ i ≤ n − 1, such that
(a0 . . . , ai) is monotonically increasing and (ai+1, . . . , an−1) is monotonically de-
creasing, or (2) there exists a cyclic shift of indices so that (1) is satisfied. For ex-
ample, (2, 3, 8, 13, 15, 14, 7, 0) is a bitonic sequence because it first increases and then
decreases.

Let s = (a0, a1, . . . , an−1) be a bitonic sequence such that a0 ≤ a1 ≤ . . . ≤
an/2−1 and an/2 ≥ an/2+1 ≥ . . . ≥ an−1. The bitonic sequence s can be sorted with
bitonic split operation which halves the sequence into two bitonic sequences s1 and s2

such that all the values of s1 are smaller than or equal to all the values of s2 [5]. That
is, the bitonic split operation performs:

s1 = (min{a0, an/2}, . . . ,min{an/2−1, an−1})
s2 = (max{a0, an/2}, . . . ,max{an/2−1, an−1})

For example, the bitonic sequence mentioned above s = (2, 3, 8, 13, 15, 14, 7, 0)
will be divided to two bitonic sequences s1 = (2, 3, 7, 0) and s2 = (15, 14, 8, 13). Note



that both the s1 and s2 are bitonic sequences. Thus, given a bitonic sequence, we can use
bitonic splits recursively to obtain short bitonic sequences until we obtain sequences of
size one, at which point the input bitonic sequence is sorted. This procedure of sorting
a bitonic sequence using bitonic splits is called bitonic merge (BM).

Given a set of elements, we must transform them into a bitonic sequence. This can
be done recursively doubling the size of bitonic sequence. The bitonic sorting network
for sorting N numbers consists of logN bitonic sorting stages, where the ith stages is
composed of N/2i alternating increasing and decreasing bitonic merges of size 2i.

Figure 1 shows the block structure of a bitonic sorting network of size N = 16.
⊕BM[k] and 	BM[k] denote increasing and decreasing bitonic merging networks of
size k, respectively. The last merging network (⊕BM[16]) sorts the input.

⊕ BM[2]

	 BM[2]

⊕ BM[2]

	 BM[2]

⊕ BM[2]

	 BM[2]

⊕ BM[2]

	 BM[2]

⊕ BM[4]

	 BM[4]

⊕ BM[4]

	 BM[4]

⊕ BM[8]

⊕ BM[16]

	 BM[8]

Fig. 1. Bitonic sorting network of size 16

Bitonic sort hypercube (my id, my number, n, result)
begin

result← my number;
for i← 0 to n− 1 do

for j ← i downto 0 do
partner← my id XOR 2j ;
send result to partner;
receive number from partner;
if (my id AND 2i+1 6= my id AND 2j) /* max */

if (number > result)
result← number;

else /* min */
if (number < result)

result← number;
end

Fig. 2. Bitonic sorting algorithm on n-cube

Figure 2 gives a bitonic sorting algorithm on an n-cube. The algorithm executes
on every node in the n-cube in parallel. There are four parameters in the algorithm:



my id is the binary node address; my number is the number residing in the node; n is
dimension of the hypercube; and result is the sorted number. The sorted numbers are in
the same order as the node addresses. The outer for loop generates bitonic sequences
in the dimension order of i = 0 to n − 1. Each iteration of the loop doubles the size
of bitonic sequences. The bitonic merge is done by the inner for loop, which takes the
order of j = i to 0. In the current step j, nodes u and u(j) exchange their numbers
each other through the link of the dimension j and compare the two numbers, where
the addresses of nodes u and u(j) differs only in the dimension j. After the comparison,
node u keeps the number as result based on the following rule: If the value of jth bit
of the address differs from the value of i + 1st bit of the address, the node keeps the
maximum of the two numbers; minimum otherwise.

A bitonic sorting example on a 4-cube is shown in Figure 3 where the sorted result
is the same value as my id.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

03 03 02 00
08 08 03 02
02 13 08 03
13 02 13 07
15 07 15 08
07 15 14 13
00 14 07 14
14 00 00 15
06 06 01 12
09 09 06 11
01 11 09 10
11 01 11 09
10 04 12 06
04 10 10 05
05 12 05 04
12 05 04 01

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

BM[2] BM[4] BM[8] BM[16]

i = 0 i = 1 i = 2 i = 3

Fig. 3. Bitonic sorting on a 4-cube

The computational complexity for sorting N = 2n numbers in an n-cube is O(n×
(n+ 1)/2) = O(n2). Similarly, the communications take O(n2) steps.

3 Metacube and Its New Presentation
Metacube (MC for short) is a versatile family of interconnection networks. It includes
hypercube as a special case. In this section, we first introduce the original presentation
of the MC architecture. Then, we give a new presentation of the MC that makes the
efficient parallel sorting on MC possible.

The address format of an MC is shown in Figure 4. There are two parameters in an
MC network, k and m. The value c of the most significant k bits defines the class ID of
a node. The rest of the address consists of 2k fields ei, for 0 ≤ i ≤ 2k − 1, and each
field has m bits. Therefore, an MC(k,m) uses 2km + k bits to identify a node and the
total number of nodes is 2n where n = 2km+ k.



Referring to Figure 4, the nodes in an MC(k,m) are connected with the following
method. There are k+m links per node. For any two nodes whose addresses differ only
in a bit position in the class ID, there is a link connecting these two nodes. This is, the
k-bit class ID defines a high-level k-cube. The links in the k-cube is called cross-edge.
Among the 2k fields ei, for 0 ≤ i ≤ 2k − 1, only the field ec forms a low-level m-cube
with m links, where c is the class ID of the node. The links in an m-cube is called
cube-edges.

c

k bits

e2k−1

m bits

e2k−2

m bits

e1

m bits

e0

m bits

. . .

2km bits

2km+ k bits

class

Fig. 4. Address format of metacube

For example, the three neighbors within the low-level m-cube of the node with ad-
dress (01, 111, 101, 110, 000) in an MC(2, 3) have addresses (01, 111, 101, 111, 000),
(01, 111, 101, 100, 000), and (01, 111, 101, 010, 000). The underlined bits are those that
differ from the corresponding bits in the address of the referenced node. The two neigh-
bors in the high-level k-cube are (00, 111, 101, 110, 000) and (11, 111, 101, 110, 000).
An MC(2, 1) is shown in Figure 5 in which we drew only the cross-edges of nodes
(xx, 0, 0, 0, 0) in addition to the cube-edges.

The value of k affects strongly the growth rate of the size of the network. An
MC(1,m) containing 22m+1nodes is called a dual-cube. Similarly, an MC(2,m), an
MC(3,m), and an MC(4,m) containing 24m+2 nodes, 28m+3 nodes, and 216m+4 nodes,
are called quad-cube, oct-cube, and hex-cube, respectively. Since an MC(3, 3) contains
227 nodes, the oct-cube is sufficient to construct practically supercomputers of very
large size. The hex-cube is of theoretical interest only. Note that an MC(0,m) is a hy-
percube.

An MC(k,m) has much less links than the corresponding n-cube for n = 2km+k,
and hence, the point-to-point communication in metacubes is little bit complex than that
in hypercubes. In a metacube, communication between two nodes that are not in a same
m-cube must go through the k-cube so that the different address bits of the two nodes
in all the fields ei, for 0 ≤ i ≤ 2k − 1, can be routed. The following example shows the
routing path between nodes s = 01, 111, 101, 110, 000 and t = 10, 110, 001, 100, 100:

01, 111, 101, 110, 000− 01, 111, 101, 100, 000− 00, 111, 101, 100, 000 −
00, 111, 101, 100, 100− 10, 111, 101, 100, 100− 10, 111, 001, 100, 100 −
11, 111, 001, 100, 100− 11, 110, 001, 100, 100− 10, 110, 001, 100, 100

This address presentation is cluster-based. It is efficient for the collective commu-
nications. In order to perform the bitonic sorting in metacube networks efficiently, we
use a new presentation, called class-based, as shown as in Figure 6.

The value c of the least significant k bits (bits k − 1, . . . , 1, 0) defines the class ID
of a node. These k bits form a k-cube, which is the same as the high-level k-cube in



012345

c

Node address:

00
0000

00
0001

00
0010

00
0011

00
0100

00
0101

00
0110

00
0111

00
1000

00
1001

00
1010

00
1011

00
1100

00
1101

00
1110

00
1111

01
0000

01
0010

01
0001

01
0011

01
0100

01
0110

01
0101

01
0111

01
1000

01
1010

01
1001

01
1011

01
1100

01
1110

01
1101

01
1111

10
0000

10
0100

10
0001

10
0101

10
0010

10
0110

10
0011

10
0111

10
1000

10
1100

10
1001

10
1101

10
1010

10
1110

10
1011

10
1111

11
0000

11
1000

11
0001

11
1001

11
0010

11
1010

11
0011

11
1011

11
0100

11
1100

11
0101

11
1101

11
0110

11
1110

11
0111

11
1111

c = 0 c = 1

c = 2 c = 3

Fig. 5. The Metacube MC(2,1)

cf1fm

k bits2k bits2k bits

2km bits

0k2k(m−1)+k

2km+ k bits

. . .

class

Fig. 6. The new presentation of metacube

the original address definition. Next to the class ID, there m fields fi, for 1 ≤ i ≤ m.
Each field has 2k bits. Among these 2k bits in field fi, for 1 ≤ i ≤ m, there is only
one bit position j = 2k(i− 1) + c+ k at which a link connects node u to another node
u(j) whose address differs from u at the bit position j. We call this link bridge. The m
bridges (each field contributes one bridge) form an m-cube which is equivalent to the
low-level m-cube in the original address definition.

Figure 7 shows an MC(k,m) structure with k = 2 andm = 1 using the new address
presentation. A node address has 2km + k = 22 × 1 + 2 = 6 bits shown in two rows:
The 4-bit value in upper row is f1 and the 2-bit value in lower row is the class ID c.
Each node has k + m, or 3, links: Two links are used to form a k-cube and one link
(bridge) connects two nodes whose addresses differ in c+kth bit position. For example,



nodes 0000, 11 and 1000, 11 of class 3 are connected with a bridge because these two
nodes’ addresses differ in 3 + 2, or 5th (left-most) bit position.

0000
00

0000
01

0000
10

0000
11

0001
00

0001
01

0001
10

0001
11

0010
00

0010
01

0010
10

0010
11

0011
00

0011
01

0011
10

0011
11

0100
00

0100
01

0100
10

0100
11

0101
00

0101
01

0101
10

0101
11

0110
00

0110
01

0110
10

0110
11

0111
00

0111
01

0111
10

0111
11

1000
00

1000
01

1000
10

1000
11

1001
00

1001
01

1001
10

1001
11

1010
00

1010
01

1010
10

1010
11

1011
00

1011
01

1011
10

1011
11

1100
00

1100
01

1100
10

1100
11

1101
00

1101
01

1101
10

1101
11

1110
00

1110
01

1110
10

1110
11

1111
00

1111
01

1111
10

1111
11

012345

cf1

Node address:

Fig. 7. The MC(2,1) with new presentation

Next, we explain the reasons of why we use this new presentation for the design
of efficient algorithms such as sorting algorithm on metacube. Using the new presenta-
tion, if we map a k-cube to a single super-node then an MC(k,m) will be mapped onto
a 2km-cube; a bridge that connects nodes in distinct super-nodes in MC(k,m) becomes
a hypercube edge. Mapping each 2-cube in Figure 7 into a single super-node, we get
a 4-cube. Therefore, communications among k-cubes in MC(k,m) can be treated ex-
actly as that in hypercube. For communications inside a k-cube, we can use collective
communication procedures such as broadcast, gather, scatter etc., to collect or distribute
data from a specific node to all other nodes in the k-cube.

For sorting on a metacube, we use the new address presentation of the metacubes
and bitonic sorting algorithm. The communications between the node pairs in the bitonic
sorting on a metacube can be done with gather and scatter operations through bridges
efficiently which we describe in the next section.

4 Sorting on Metacube
In this section, we present a new sorting algorithm on metacube based on the parallel
bitonic sorting. Given an MC(k,m), we assume that each node in MC(k,m) holds a



single element (number). The sorting algorithm compares and exchanges elements so
that, at the end, all the elements are in the ascending order arranged by their addresses.

The parallel sorting on metacubes is based on the bitonic sorting on hypercubes. The
basic operation is compare-and-exchange: Nodes u and u(j) whose addresses differ in
jth bit position for 0 ≤ j ≤ 2km + k − 1 send their elements to each other. Nodes
u and u(j) retain the smaller number and bigger number, respectively, if u < u(j).
However, there may be no direct links in some dimensions between nodes u and u(j) in
a metacube.

As we described in the previous section, the node address has 2km+k bits (dimen-
sions) and there are only k + m links per node in an MC(k,m). For a dimension j, if
0 ≤ j ≤ k − 1, there is a link between nodes u and u(j), otherwise, there is a link
(bridge) only in the dimension j that satisfies (j − k) MOD 2k = c where c is the class
ID of nodes u and u(j). Figure 8 shows the four bridges of the 2-cube in which the field
f1 of the node addresses is 0000 in an MC(2, 1).

0000
00

0000
01

0000
10

0000
11

0001
00

0001
01

0001
10

0001
11

0000
00

0000
01

0000
10

0000
11

0010
00

0010
01

0010
10

0010
11

0000
00

0000
01

0000
10

0000
11

0100
00

0100
01

0100
10

0100
11

0000
00

0000
01

0000
10

0000
11

1000
00

1000
01

1000
10

1000
11

(a) Dimension 2 (c = 0) (b) Dimension 3 (c = 1)

(c) Dimension 4 (c = 2) (d) Dimension 5 (c = 3)

012345

cf1

Node address:
Dimensions:

Fig. 8. Bridges in dimensions 2, 3, 4, and 5

In the case of Figure 8(b), the two node in every pair (0, 8), (1, 9), (2, a), and (3, b)
communicate simultaneously. Nodes 1 and 9 can send their elements to each other di-
rectly because there is a link (bridge) between the two nodes. The other three pairs
cannot do it directly due to the lack of the direct links: They must go through the bridge
that links nodes 1 and 9.

Because nodes 0, 1, 2, and 3 are in the same 2-cube, we can gather elements of
the four nodes to node 1, send the gathered elements to node 9 via the bridge, and then
scatter the received elements to nodes 8, 9, a, and b. We can do the similar operations
in the opposite direction.

Generally, in the gather operation, a single node collects a unique message from
each node (also called concatenation). In the scatter operation, a single node sends a
unique message to every other node (also called a one-to-all personalized communi-



cation). The scatter operation is exactly the inverse of the gather operation. Figure 9
shows the communication steps for the gather and scatter operations on the two 2-cubes
of Figure 8(b).

{0}

(a) Data distribution

{1}

{2} {3}

{8} {9}

{a} {b}

{0}

(b) Gathering via dim. 0

{1, 0}

{2} {3, 2}

{8} {9, 8}

{a} {b, a}

{1, 0,
3, 2}

(c) Gathering via dim. 1

{3, 2}

{9, 8,
b, a}

{b, a}

(d) Exchange (e) Scattering via dim. 1

{b, a} {3, 2}

{9, 8} {1, 0} {8}

(f) Scattering via dim. 0

{9}

{a} {b}

{0} {1}

{2} {3}

{1, 0,
3, 2}

{9, 8,
b, a}

Fig. 9. Gather and scatter in dimension 3

In Figure 9(a), node i for i = 0, 1, 2, 3, 8, 9, a, b, contains its element {i}. In Fig-
ure 9(b), the arrowed lines denote the communication direction along with the dimen-
sion 0, that is, four nodes 0, 2, 8, and a send their elements to nodes 1, 3, 9, and b,
respectively. Nodes 1, 3, 9, and b concatenate the received elements with their own el-
ements. In Figure 9(c), the communications take place in dimension 1. Note that only
two nodes 3 and b send their own elements gathered in the first step, and nodes 1 and 9
concatenate the received elements with their own elements. At this step, nodes 1 and 9
have gathered the entire elements within their 2-cube, respectively. Then, nodes 1 and 9
send the gathered elements to each other through the bridge as shown as in Figure 9(d).
Figures 9(e) and 9(f) show the steps of the scatter operation which is the reverse of the
gather operation. As the final result, every node contains the element of its partner in
addition to its original element. There are 2k + 1 communication steps in total: Each
of the gather and scatter operations takes k steps and the exchange through the bridge
requires one step.

We formally give the gather and scatter algorithm in Figure 10. In an MC(k,m),
node u = my id sends the element number in to node u(j) and receives the element
number out from node u(j) where the addresses of nodes u and u(j) differ in the j bit
position and 0 ≤ j ≤ 2km+ k − 1.

The exchange of the elements is done with the gather and scatter operations through
the bridge. In Figure 10, my class = my id AND (2k − 1) is the class ID of node u;
bridge class = (j − k) MOD 2k is the class ID of two nodes which are connected with
the bridge; and class diff = my class XOR bridge class is the dimension difference
between the classes of my class and bridge class that is used to control the sending and
receiving operations. The algorithm is composed of three parts: 1) gathering elements
to a node of bridge class; 2) exchanging elements through the bridge; and 3) scattering
elements to nodes in k-cube. The gather operation collects elements from all the nodes



Gather scatter (number in, my id, k, j, number out)
begin

my class← my id AND 2k − 1;
bridge class← (j − k) MOD 2k;
class diff← my class XOR bridge class;
/* 1. Gathering elements to a node of bridge class */
R← {number in};
mask← 0;
for i← 0 to k − 1 do

/* Select nodes whose lower i bits are 0 */
if (class diff AND mask = 0)

if (class diff AND 2i 6= 0)
msg destination← my id XOR 2i;
send R to msg destination;

else
msg source← my id XOR 2i;
receive S from msg source;
R← R ∪ S;

mask← mask XOR 2i; /* Set bit i of mask to 1 */
/* 2. Exchanging elements through the bridge */
if (class diff = 0) /* my class = bridge class */

partner← my id XOR 2j ;
send R to partner;
receive S from partner;

/* 3. Scattering elements to nodes in k-cube */
mask← 2k − 1;
for i← k − 1 downto 0 do

mask← mask XOR 2i; /* Set bit i of mask to 0 */
if (class diff AND mask = 0)

if (class diff AND 2i = 0)
msg destination← my id XOR 2i;
send second half of S to msg destination;
S ← first half of S;

else
msg source← my id XOR 2i;
receive S from msg source;

number out← S;
end

Fig. 10. Gather and scatter on MC(k,m)

in the k-cube to a node of bridge class. This is done by a for loop with i = 0, 1, . . . , k−
1. Because the communication patterns of the nodes in the k-cube are not same, we must
control the sending and receiving operations of the nodes based on class diff, i and
mask. The mask makes the number of the nodes that participate sending and receiving
operation to be half for the next loop iteration. R is the collected element set to which
the received element S is concatenated.

After finishing the gather operation, R contains all the elements of the nodes in the
k-cube and is sent to another node through the bridge. The scatter operation distributes
each element of the received element set S to all the nodes in the k-cube. It is the reverse
of the gather operation. As the output of the algorithm, each node u gets an element
number out of the node u(j). The sorting algorithm on metacubes is given in Figure 11.
When the dimension is less than k, we perform send and receive directly between the



two nodes of a node pair; otherwise, we perform Gather scatter operations to exchange
the elements.

Bitonic sort metacube (my id, my number, k, m, result)
begin
n← 2km+ k;
result← my number;
for i← 0 to n− 1 do

for j ← i downto 0 do
if (j < k) /* direct communication in k-cube */

partner← my id XOR 2j ;
send result to partner;
receive number from partner;

else /* gather and scatter via k-cube */
Gather scatter (result, my id, k, j, number);

if (my id AND 2i+1 6= my id AND 2j) /* max */
if (number > result)

result← number;
else /* min */

if (number < result)
result← number;

end

Fig. 11. Bitonic sorting algorithm on MC(k,m)

Theorem 1. In the bidirectional channel and 1-port communication model, bitonic
sorting in an MC(k,m) with N = 22km+k nodes can be done in (2km + k)2 com-
putation steps and (2km(2k + 1) + k)2 communication steps, respectively.

Proof: We first show that the correctness of the algorithm Bitonic sort metacube. We
define a 2k-to-1 mapping from the set of vertices of MC(k,m) onto the set of ver-
tices of 2km-cube as follows: f : bn−1 . . . b1b0 → bn−1 . . . bk, where n = 2km + k.
From the new presentation of metacube, the bridges of MC(k,m) are mapped onto the
edges of 2km-cube. That is, MC(k,m) is mapped onto a 2km-cube. After mapping, the
operations in step 1 and step 3 in algorithm Gather scatter become local memory ac-
cesses. It is easy to see that the algorithm Bitonic sort metacube emulates the algorithm
Bitonic sort hypercube in the mapped 2km-cube with each node holding 2k numbers.
Therefore, from the algorithm Gather scatter which gathers 2k elements in a k-cube
and scatters them to another k-cube via a bridge (an edge in the mapped 2km-cube), we
conclude that the algorithm emulates the algorithm Bitonic sort hypercube correctly.

Next, we assume that the edges in MC(k,m) are bidirectional and each node in
MC(k,m) can receive a message, concatenate it with local data and send the concate-
nated message to its neighbor in one time unit. In the proposed algorithm, at each iter-
ation, all pairs of nodes in MC(k,m), (u, u(j)) for a specific dimension j, should per-
form the compare-and-exchange operation. This is done by performing Gather scatter
for every pair of k-cubes that requires a total of 2k + 1 communication steps for a sin-



gle compare-and-exchange operation. Therefore, the communication time Tcomm(n)
and computation time Tcomp of the proposed algorithm are (2km(2k + 1) + k)2 and
(2km+ k)2, respectively. ♦

5 Concluding Remarks
In this paper, we showed an efficient sorting algorithm on MC(k,m) that uses a new
presentation of the metacube. Based on the new presentation, the hypercube algorithms
can be emulated effectively. The overhead for the emulation is mainly due to commu-
nicate between the two matched k-cubes through a bridge. Since k is small (k ≤ 3
for any possible practical parallel computers), the overhead for the communication is
relatively small. The future work includes the following: (1) Generalize the proposed
algorithm for sorting input sequences of any size on metacube and perform simulations
and empirical analysis for the proposed algorithm. (2) Investigate and develop more
application algorithms on metacube based on the new presentation.

References
1. K. E. Batcher. Sorting networks and their applications. In Proceedings of AFIPS Spring

Joint Computer Conference, pages 307–314, Apr. 1968.
2. Shih-Yan Chen and Shin-Shin Kao. The edge-pancyclicity of dual-cube extensive networks.

In Proceedings of the 2nd WSEAS International Conference on Computer Engineering and
Applications, pages 233–236, Acapulco, Mexico, January 2008.

3. J. P. Hayes and T. N. Mudge. Hypercube supercomputers. Proc. IEEE, 17(12):1829–1841,
Dec. 1989.

4. Z. Jiang and J. Wu. Fault-tolerant routing in dual-cube networks. In Proc. of the 7th Joint
Conference on Information Sciences, Sept. 389-392.

5. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel computing: design
and analysis of algorithms. Benjamin/Cummings Press, 1994.

6. Chia-Jui Laia and Chang-Hsiung Tsai. On embedding cycles into faulty dual-cubes. Infor-
mation Processing Letters, 109(2):147–150, December 2008.

7. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees and
Hypercubes. Morgan Kaufmann Pub, 1992.

8. Y. Li, S. Peng, and W. Chu. Efficient communication in metacube: A new interconnection
network. In Proceedings of the International Symposium on Parallel Architectures, Algo-
rithms and Networks (I-SPAN 2002), pages 165–170, Manila, Philippines, May 2002.

9. Y. Li, S. Peng, and W. Chu. Metacube – a new interconnection network for large scale parallel
systems. In Australian Computer Science Communications, volume 24, pages 29–36, 2002.

10. Behrooz Parhami. Introduction to parallel processing, algorithm and architecture. Plenum
Press, 1999.

11. M. Venkata Rao and N. Chalamaiah. Routing and broadcasting algorithms for a metacube
interconnection topology for large scale parallel systems. In Proceedings of Asia Pacific
Confeence on Parallel and Distributed Computing Technologies, pages 1037–1049, Decem-
ber 2004.

12. SGI. Origin2000 Rackmount Owner’s Guide, 007-3456-003. http://techpubs.sgi.com/, 1997.
13. L. W. Tucker and G. G. Robertson. Architecture and applications of the connection machine.

IEEE Computer, 21:26–38, August 1988.
14. C. Wu and J. Wu. On self-similarity and hamiltonicity of dual-cubes. In Proc. of Workshop

on Massively Parallel Processing (in conjunction with IPDPS), April 2003.


