
First IEEE Symposium on High-Performance Computer Architecture, January 22–25, 1995, Raleigh, USA, pp.318–325

The Effects of STEF in Finely Parallel Multithreaded Processors

Yamin Li and Wanming Chu

Computer Architecture Laboratory
The University of Aizu

Aizu-Wakamatsu, 965-80 Japan

Abstract
The throughput of a multiple-pipelined processor suf-

fers due to lack of sufficient instructions to make mul-
tiple pipelines busy and due to delays associated with
pipeline dependencies. Finely Parallel Multithreaded Pro-
cessor (FPMP) architectures try to solve these problems
by dispatching multiple instructions from multiple instruc-
tion threads in parallel. This paper proposes an analytic
model which is used to quantify the advantage of FPMP
architectures. The effects of four important parameters in
FPMP, S, T, E, and F, (STEF) will be evaluated. Unlike
previous analytic models of multithreaded architecture, the
model presented here concerns the performance of multi-
ple pipelines. It deals not only with pipeline dependen-
cies but also with structure conflicts. The model accepts
the configuration parameters of a FPMP, the distribution
of instruction types, and the distribution of interlock delay
cycles. The model provides a quick performance prediction
and a quick utilization prediction which are helpful in the
processor design.

Keywords and phrases:finely parallel multithreading,
interleaved dispatching, round robin scheduling, pipeline
dependency, structure conflict, speed-up ratio, utilization
of pipelines.

1 Introduction
Pipelining has been widely used in designing processors

for exploiting the parallelism of operations. The potential
speed-up of pipelining is equal to the number of pipeline
stages used. This advantage encourages engineers to use
deeper and deeper pipelines in designing high-performance
processors. But, this ideal speed-up is rarely achieved in
practice due to the delays associated with pipeline depen-
dencies and memory access latencies. NOOP instructions
(no operation, i.e., pipeline bubbles) will be inserted into
the delay cycles.

An approach of improving pipeline utilization is to re-
alize concurrent multithreading in the processor. Such pro-
cessors dispatch instructions from different threads on ev-

ery clock cycle to tolerate the delays. An instruction thread
is defined as a set of instructions belonging to a particu-
lar context that can be executed independently of other in-
struction threads [1]. Because there is no dependency be-
tween instructions belonging to different threads, pipeline
bubbles due to pipeline dependencies or processor stalls
due to memory latencies can be prevented [4]. This cycle-
by-cycle interleaved processor is calledFinely Concurrent
Multithreaded Processor(FCMP).

Contrast to FCMP, theCoarsely Concurrent Multi-
threaded Processor(CCMP) dispatches instructions from
one thread. When a remote memory access is encoun-
tered, the processor rapidly switches to another thread [3].
CCMP can give a single thread better performance but
has worse capability of tolerating instruction dependencies
than FCMP. Both the FCMP and CCMP dispatch instruc-
tions sequentially. This is one of the main features of the
concurrent multithreaded processors. The performance of
this type processors is influenced mainly by the instruction
dependencies.

The concurrent multithreading is efficient when (1) the
system has large memory-access latencies, (2) the proces-
sor has a deep pipeline, and (3) the context switch over-
head is low. In order to speed-up the context switch, gener-
ally, multiple register sets and special data paths are needed
to serve multiple threads. Since only one thread uses its
register set at a given time, the concurrent multithreaded
processors result in a low utilization of multiple regis-
ter sets. Furthermore, because of the advances in circuit
technologies, most high-performance processors were de-
signed with multiple functional units (multiple execution
pipelines) to execute different type of instructions. For ex-
ample, six functional units (ALU, Shifter, Load/Store Unit,
Branch Unit, Floating-Point Adder and Multiplier) can ac-
cept six instructions in one clock cycle. In this case, the
concurrent multithreaded processor also result in a low uti-
lization of multiple pipelines.

Allocating multiple thread slots in a single processor,
to realize multiple instruction threads to be executed si-
multaneously, is a solution for improving the utilization

318

of multiple pipelines [1, 2]. The multiple threads may
be generated from a single program or from multiple pro-
grams. Thus, the MIMD parallel processing will be real-
ized on a single processor. Such processor is called parallel
multithreaded processor. Similarly, there areFinely Paral-
lel Multithreaded Processor(FPMP) andCoarsely Paral-
lel Multithreaded Processor(CPMP). In the CPMP, during
a period, the number of scheduled threads is equal to the
number of thread slots. Whenever a remote memory ac-
cess from a thread is encountered, the processor suspends
that thread and schedules a new thread. On the other hand,
the FPMP dispatches instructions from different resident
threads (usually more than thread slots) on every clock cy-
cle. Multiple execution pipelines and multiple register files
are needed for executing multiple instructions in parallel.
The performance of this type of processors is influenced
not only by instruction dependencies but also by structure
conflicts.

When the number of thread slots is given, using more
functional units in a single processor will improve the pro-
cessor performance, but will result in a low functional unit
utilization. On the other hand, using fewer functional units
will improve utilization but at the cost of reduced perfor-
mance. A compromise between processor performance
and functional unit utilization must be made for the pro-
cessor design.

Dubey et.al. [5] proposed an analytic model for evaluat-
ing the FCMP architecture. The model presented by them
is limited to predicting the performance of a processor with
one pipeline and one thread slot. Because, at most one in-
struction can be issued on every clock cycle, no structure
conflict exists. The processor performance is affected only
by the distribution of instruction interlock delay. When the
processor has sufficient instruction threads for interleaved
scheduling (for example, when the number of threads is
equal to or larger than the maximal number of cycles re-
quired by execution pipeline stage), the processor utiliza-
tion is said to be 100%. But when the processor has six
independent execution pipelines, the average pipeline uti-
lization is only 16.7%.

This paper proposes an analytic model which is used
to quantify the utilization of multiple pipelines in FPMP
architectures with multiple thread slots. The model deals
not only with pipeline dependencies but also with struc-
ture conflicts. The effects of four important parametersS,
T , E, andF (STEF) will be evaluated whereS is the
the number of thread slots,T is the number of instruction
threads,E is the maximal number of cycles required by
execution stage, andF is the number of functional units.
The model accepts a general distribution for the interlock
delays with multiple latencies same as in [5] and a general
distribution for the different type of instructions which will

be dispatched to different pipelines. The model predicts
the utilization of multiple pipelines for different configu-
rations, for example, for different number of thread slots
and different number of resident threads. The model can
also be used to quantify the speed-up ratio of the FPMP
architecture compared to the FCMP architecture.

The paper is organized as follows. Section 2 introduces
the FPMP architecture. Section 3 describes the analytic
model. Section 4 takes four examples to discuss the effects
of STEF. The final section concludes the paper.

2 A FPMP Architecture
Figure 1 shows a typical FPMP architecture. Differing

from a conventional pipelined processor, FPMP contains
state information ofT threads. Each thread has its own
program counter, status register, and register file.F func-
tional units serve asF independent execution pipelines to
support multiple instruction executions. There areSthread
slots used for instruction dispatching. AThread Dispatch
Unit (TDU) selectsS threads fromT threads in an inter-
leaved fashion. On every clock cycle, up toS instructions
can be dispatched.

A separate instruction cache is provided for each of
thread slots. In order to facilitate the interleaved thread se-
lection,T instruction threads are distributed toSinstruction
caches equally. Each instruction cache contains on average
of T/Sinstruction threads.

An Instruction Scheduling Unit(ISU) schedules theS
instructions and issues them to the functional units if there
are neither structure conflicts amongS instructions nor in-
struction dependencies with previously issued instructions
within a thread.

If two or more instructions require the same functional
unit on the same clock cycle, then structure conflict occurs.
The ISU selects one instruction to issue to the functional
unit if dispatched instructions cause structure conflicts. A
simple instruction scheduling strategy,round robin, is
employed. Referring to Figure 2, a unique priority (PRi)
is assigned to each thread slot (not thread). The instruc-
tion with highest priority will be considered first (REQ1).
If the source operands are not available (READY1) for the
instruction, an instruction from next thread slot (REQ2and
READY2) will be examined. This procedure is repeated un-
til a ready instruction is found (ISSUEi) or all the thread
slots are examined. In order to give thread slots equal op-
portunity to be scheduled, the priorities are rotated on every
cycle or several cycles (R CLK).

Availability of source operand is checked by using the
scoreboardmechanism. If the scoreboard bits of the source
operands are cleared, a ready instruction is found. Then the
source operands are read out from the correct register file
and destination register’s scoreboard bit is set. The score-
board bit will be cleared at the final clock cycle of execu-

319

Instruction
Caches (S)

Instruction Scheduling Unit (F)

Interconnection Network

Thread Dispatch Unit (S)

ALU FPMUL LD/ST

2 3 4 F

1 2 S...

...

Data
Cache

Update
PCs

JUMP

1

F = No. of Functional Units
S = No. of Slots
T = No. of Instruction Threads (Contexts)

Register File (T)

3

1 2 S...3

FPADD

2 3 4 F...1

2 3 4 F...1

...

Figure 1: A finely parallel multithreaded processor architecture

tion stage. Thus the scoreboard bits could prevent incorrect
data from entering into the pipeline.

The ISU is provided for each functional unit and FIFO
registers for each of thread slot are provided in the ISU.
Un-issued instructions will be held in FIFO, waiting for
scheduling in the following clock cycle. The TDU is in-
formed to stop fetching instructions from corresponding
thread slots in the following clock cycle. Because the next
instruction to the un-issued instruction is being fetched, the
FIFO must have at least two registers for the thread slot.
The total number of FIFO registers is2 ∗ S ∗ F , whereS
is the number of thread slots andF is the number of func-
tional units. The functional units carry out the desired data
operations, and the results are written back into register
file.

An Interconnection Network(IN) is needed between the
register files and the functional units. From the program-

mer’s point of view, this physical FPMP is equal toS log-
ical FCMPs and each FCMP executesT/Sthreads concur-
rently.

3 The Analytic Model
In this section, we will propose an analytic model for

predicting processor-performance improvement and func-
tional unit utilization for the finely parallel multithreaded
processor architecture.

According to the FPMP architecture described in Sec-
tion 2, we make the following assumptions:

• There areT instruction threads and all the threads are
identical.

• There areS thread slots that can dispatch instructions
simultaneously, and for fast instruction fetching, a

320

REQ1READY1

ISSUE1

1

REQ2READY2

ISSUE2

0

REQ3READY3

ISSUE3

0

...

...

Highest Priority

D Q

C Q
P

CD Q

C Q
C

P D Q

C Q
C

P

...

...

...

...RESET

R_CLK

PR3 PR1 PR2

Figure 2: A round robin circuit for instruction dispatching

separated instruction cache is provided for each thread
slot.

• The processor has more instruction threads than
thread slots and the instruction threads are distributed
equally to instruction caches: each cache holds aver-
ageT/Sthreads.

• TheT/Sinstruction threads are interleaved and one in-
struction is fetched from the selected thread per clock
cycle.

• F functional units are provided to serve asSexecution
pipelines.

• All the functional units are effectively pipelined and
are capable of accepting a new instruction in every
cycle.

• All the instructions are divided intoF classes: thejth
class instructions will be executed on thejth func-
tional unit(j=1,2,...,F).

• The percentage of occurrences of thejth class instruc-
tions in dynamic instruction stream isρj (j=1,2,...,F).

• The distribution of interlock delays is described by
the probability vectorp = (p1, p2, ..., pE), wherepj
is the fraction of instructions that have an interlock

delay of j-1 cycles after they were scheduled,E-1 is
maximum of interlock delay cycles, i.e.,E is the max-
imal number of cycles required by execution pipeline
stage.

First of all, consider a conventional processor:T=1 and
S=1. TheCPI (cycles per instruction) estimate can be eas-
ily obtained [5] as

CPI = 1 +
E
∑

j=1

pj ∗ (j − 1). (1)

For example, aE=4 processor has following distribu-
tion of interlock delays. 20% of instructions have a in-
terlock delay of three cycles. 10% of instructions have a
interlock delay of two cycles and 30% of instructions have
a interlock delay of one cycle. The remaining instructions
require no interlock delay. TheCPI of the processor is
1 + 0.4 ∗ 0 + 0.3 ∗ 1 + 0.1 ∗ 2 + 0.2 ∗ 3 = 2.1, as given by
Equ. 1. The number of real executed instruction-per-cycle
is 1/2.1=0.476, i.e., the processor utilization is47.6%.

Now, consider that there are two instruction threads,
T=2, that share the processor pipeline. Two threads are
scheduled alternately, i.e., theinterval of dispatching in-
structions from a thread is two cycles (Figure 3). Because
independent instructions will be inserted into the instruc-
tions of a thread, the suffering of interlock delay will be al-

321

leviated for each thread. For example, in theE=4 processor
mentioned above, 20% of instructions have a new interlock
delay of one instruction cycle, as explained in Figure 3(b).

Interlock delay
= 3 instructions

Interlock delay
= 1 instruction

(a) One thread:

(b) Two threads
interleave:

time

Instruction thread A

Instruction thread B

Interval = 1 cycle

Interval = 2 cycles

1 2 3

1

Figure 3: The interlock delay in a two-thread processor

Generally, in a processor withT instruction threads, the
new value of interlock delays will be changed from(j−1)
cycles to(j/T − 1) cycles. Therefore, we can obtain the
newCPI, denoted byCT , for aT-threadprocessor as

CT = 1 +
E
∑

j=1

pj ∗max(0, (
j

T
− 1)). (2)

In the mentionedE=4, T=2 processor, theC2 is 1 +
0.4 ∗ 0 + 0.3 ∗ 0 + 0.1 ∗ 0.5 + 0.2 ∗ 1 = 1.25. The num-
ber of real executed instructions per cycle is 1/1.25=0.8.
The processor utilization increased from 47.6% to 80.0%,
i.e., 68% of improvement was achieved. Note that in the
T ≥ E processor,CT reaches the minimum of one cycle,
i.e., the processor utilization is 100%. However, if the pro-
cessor has seven independent execution pipelines (F = 7),
(ALU, Shifter, Load/Store Unit, Branch Unit, Floating-
Point Adder, Multiplier, and Divider for instance), the to-
tal average utilization of all the pipelines is (100/7)% =
14.3%.

For theS > 1 processor, maximalS instructions can be
dispatched and issued toF execution pipelines if neither
instruction dependencies nor structure conflicts exist. The
structure conflicts must be considered in theS > 1 proces-
sor. According to the assumptions described in the begin-
ning of this section, when the number of thejth class in-
structions to be dispatched on the same cycle is less than or
equal to one, there will be no structure conflicts. Hence, the

probability of structure conflictPcj(S) for the jth func-
tional unit is

Pcj(S) = 1−
1
∑

i=0

S!
i!(S − i)!

ρij(1− ρj)S−i,. (3)

wherei is the number of thejth class instructions to be
dispatched on the same cycle,ρij(1 − ρj)S−i is the prob-
ability of the case in whichi instructions out ofS instruc-
tions belong to thejth class, and S!

i!(S−i)! is the binomial
coefficient.

If the number of thejth class instructions to be dis-
patched on the same cycle is larger than one, at most one
instruction can be executed. The maximal average number
of thejth class instructionsξj(S), which are dispatched to
jth functional unit, can be calculated by Equ. 4.

ξj(S) =
S
∑

i=1

S!
i!(S − i)!

ρij(1− ρj)S−i ∗ 1 = 1− (1− ρj)S .

(4)
The total number of instructionsN , which are dis-

patched fromS thread slots, can be calculated by consid-
ering all the instruction classes:

N =
F
∑

j=1

ξj(S) =
F
∑

j=1

(1− (1− ρj)S). (5)

We assume that theN instructions come fromS thread
slots equally. Thus, each thread slot dispatchesN/S in-
structions. Note thatN/S ≤ 1. Because each thread
slot hasT/S instruction threads and dispatchesN/S in-
structions per cycle, the interval of dispatching instruc-
tions from a thread is equal to(T/S)/(N/S), i.e., there
aren = T/N virtual threads in a thread slot. In this case,
similar to Equ. 2, theCPI for thoseN instructions, de-
noted byCn, should be calculated by Equ. 6.

Cn = 1 +
E
∑

j=1

pj ∗max(0, (
j ∗N
T
− 1)). (6)

The total number of real executed instructionsI can be
calculated by dividingN byCn, I = N/Cn, and the total
average utilization of all the pipelinesµ can be obtained by
dividing I by F , as shown in Equ. 7.

µ =
N

F ∗ Cn
. (7)

The performance improvement is measured by the
speed-up ratioν which is defined as the ratio of execu-
tion time required byS > 1-slot parallel multithreaded
execution to those byS = 1-slot concurrent multithreaded
execution. The execution time of a given program can be

322

expressed as the product of three terms:i ∗ c ∗ t, wherei is
the number of instructions required,c is the average num-
ber of cycles per instruction, andt is the time per cycle.
Note thatν will asymptotically approach maximalF asT
andS increase.

ν =
i ∗ CT ∗ t

i ∗ (Cn/N) ∗ t
= N ∗ CT

Cn
. (8)

4 Examples and validation
As mentioned in Section 3, in the finely parallel mul-

tithreaded processor, there are four parameters that influ-
ence the processor performance and utilization of func-
tional units. The four parameters are denoted byS, T , E,
andF as explained in the following.S is the the num-
ber of thread slots that affects the capability of dispatch-
ing instructions per cycle.T is the number of instruction
threads and it affects the interval cycles of threads inter-
leaving. E is the maximal number of cycles required by
execution stage and it affects the interlock delay cycles.F
is the number of functional units that affects the structure
conflicts.

In the following examples, we assume thatρj =
100%/F for j = 1, 2, ..., F andpj = 100%/E for j =
1, 2, ..., E. The first example (Figure 4 and 5) shows the
effects ofS andT thenF=6 andE=4. Figure 4 shows the
speed-up ratio calculated from Equ. 8 and Figure 5 shows
the utilization of functional units calculated from Equ. 7.
By increasing the number of thread slotsS, the speed-up
and the average utilization improves, but when the pro-
cessor has four thread slots, significant improvement can-
not be obtained by further increasing the number of thread
slots. Also, we found that increasing the number of in-
struction threadsT cannot always result in performance
improvement and utilization improvement.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Instruction Threads (T)

F=6, E=4
S=8
S=7
S=6
S=5
S=4
S=3
S=2
S=1

Figure 4: Speed-Up ratios forF=6 andE=4 processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of Instruction Threads (T)

F=6, E=4
S=8
S=7
S=6
S=5
S=4
S=3
S=2
S=1

Figure 5: FU utilization forF=6 andE=4 processor

The second example (Figure 6 and 7) shows the effects
of F andE, whenS = 6 andT = 12, on speed-up ra-
tio and average utilization. WhenE is large, increasing
the number of functional units does not result in increased
speed-up. In this case, by increasing the number of func-
tional units, no performance improvement will be obtained
(Figure 6), but the utilization of functional units will be
decreased (Figure 7). Note that the caseE = 1 and the
caseE = 2 have the same speed-up ratios and the same
utilizations of functional units because each thread slot has
T/S=2 instruction threads that can be interleaved to toler-
ate delays.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Function units (F)

S=6, T=12E=1
E=2
E=3
E=4
E=5
E=6
E=7
E=8

Figure 6: Speed-Up ratios forS=6 andT=12 processor

The third example (Figure 8 and 9) shows the effects of
T andE, whenS = 6 andF = 6. Note that there are up-
per bounds of speed-up ratio and average utilization. The
upper bounds will be reached quickly whenE is small. In
this case, increasing the number of instruction threads does
not result in increased speed-up and increased utilization.

The fourth example (Figure 10 and 11) shows the ef-

323

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of function units (F)

S=6, T=12
E=1
E=2
E=3
E=4
E=5
E=6
E=7
E=8

Figure 7: FU utilization forS=6 andT=12 processor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Instruction Threads (T)

S=6, F=6E=1
E=2
E=3
E=4
E=5
E=6
E=7
E=8

Figure 8: Speed-Up ratios forS=6 andF=6 processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of Instruction Threads (T)

S=6, F=6E=1
E=2
E=3
E=4
E=5
E=6
E=7
E=8

Figure 9: FU utilization forS=6 andF=6 processor

fects ofS andE, whenF = 6 andT = 16, on speed-up
ratio and average utilization. In the case ofS = 4 and
E has a large value, by further increasing the number of

thread slots, no performance improvement and utilization
improvement will be achieved.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Thread Slots

F=6, T=16E=1
E=2
E=3
E=4
E=5
E=6
E=7
E=8

Figure 10: Speed-Up ratios forF=6 andT=16 processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 U
ti

li
za

ti
on

s
of

 F
U

s

No. of Thread Slots

F=6, T=16E=1
E=2
E=3
E=4
E=5
E=6
E=7
E=8

Figure 11: FU utilization forF=6 andT=16 processor

For the model validation, we choose a texture mapping
program, that maps a texture pattern onto a 3D object’s per-
spective projection in screen space. The main operations of
the program are like as

u =
ax+ by + c

αx+ βy + γ
, v =

dx+ ey + f

αx+ βy + γ
,

frame buffer[x][y] = texture pattern[u][v].

Seven functional units are arranged for executing the
program.

• Integer unit performs integer arithmetic and logic op-
erations.

• Load/store unit performs memory access.

• Branch unit evaluates condition codes and transfers
control to new address.

324

• Floating-point adder performs floating-point add,
subtract, and comparison.

• Floating-point multiplier performs floating-point mul-
tiply.

• Floating-point divider performs floating-point divi-
sion.

• Floating-point convert unit performs floating-
point/integer data type conversions.

We assume that all the functional units are capable of
receiving a new instruction per cycle but have different ex-
ecution cycles as following [6, 7]. The integer unit and
the branch unit have one execution cycle. The load/store
unit has two execution cycles when the data cache hit. The
floating-point adder, multiplier, and convert unit have three
execution cycles. The floating-point divider has thirteen
execution cycles.

The program is compiled to assembly code and the mul-
tiple code streams are used as inputs to a FPMP simulator.
As mentioned in Section 2, the processor has a separated
instruction cache for each thread slot and a data cache for
all the thread slots. The multiple streams are distributed
equally to the instruction caches. In order to simplify the
simulation, we assume that the cache accesses always hit.

The simulated results of speed-up ratio on texture map-
ping program are almost equal to the results generated by
using analytic model, as shown in Figure 12. We get the
instruction distributionρj for j = 1, 2, ..., F from the dy-
namic execution stream. As for the distribution of inter-
lock delay, we assume that the numbers of interlock delay
cycles are uniformly distributed over 0 toEj − 1, where
Ej is the number of clock cycles required by execution
pipeline stage ofjth functional unit forj = 1, 2, ..., F .
Hence, we get the distribution of interlock delaypi for
i = 1, 2, ...,max(E1, E2, ..., EF) from following expres-
sion.

pi =
F
∑

j=1

[
ρj
Ej
||(i ≤ Ej)].

5 Conclusion
In this paper, we presented aFinely Parallel Multi-

threaded Processor(FPMP) architecture. The FPMP real-
izes multipleFinely Concurrent Multithreaded Processors
(FCMPs) in a single processor environment. The FPMP
contains multiple functional units and multiple thread slots.
Each thread slot has multiple instruction threads and the
threads are interleaved for dispatching. In order to evaluate
the FPMP architecture, we proposed an analytic model that
provides a quick prediction for performance improvement
and a quick prediction for average utilization of multiple

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

R
at

io

No. of Instruction Threads (T)

Simulation: S=4
Simulation: S=2
Prediction: S=4
Prediction: S=2

Figure 12: Simulated speed-up ratio for texture mapping
program

functional units. The model deals not only with instruction
dependencies but also with structure conflicts. The effects
of four important parameters in FPMP,STEF , were eval-
uated and the analytic model is validated by simulation.

References
[1] R. Guru Prasadh and Chuan-lin Wu, “A benchmark

evaluation of a multi-threaded RISC processor archi-
tecture,” in Proc. of the 20th Intl. Conf. on Parallel
Processing, 1991.

[2] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizaki, A.
Nishimura, Y. Nakase, and T. Nishizawa, “An elemen-
tary processor architecture with simultaneous instruc-
tion issuing from multiple threads,” inProc. of the 19th
Annual Intl. Conf. on Computer Architecture, 1992.

[3] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz,
“APRIL: a processor architecture for multiprocessing,”
in Proc. of the 19th Annual Intl. Conf. on Computer
Architecture, 1990.

[4] D. C. McCrackin, “Eliminating interlocks in deeply
pipelined processors by delay enforced multistream-
ing,” IEEE Trans. on Computers, vol.40, No.10, Oct.
1991.

[5] P. K. Dubey, A. Krishna, and M. J. Flynn, “Analytical
modeling of multithreaded pipelined performance,” in
Proc. of the 27th Annual Hawaii Intl. Conf. on System
Sciences, 1994.

[6] “M88110: Second generation RISC microprocessor
user manual,” Motorola Inc., 1991.

[7] K. Diefendorff and M. Allen,“Organization of the Mo-
torola 88110 Superscalar RISC Microprocessor,” in
IEEE MICRO, April 1992.

325

