
K-Trunk and Efficient Algorithms for Finding a K-Trunk on a Tree Network

Yamin Li, Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin;speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract

Given an edge-weighted tree T , a k-trunk is a subtree Tk
with k leaves in T which minimizes the sum of the distances
of all vertices in T from Tk plus the weight of Tk. In this
paper, we first give motivation for using a k-trunk in tree
networks. Then we develop efficient algorithms for finding
a k-trunk of T . The first algorithm is a sequential algo-
rithm which runs in O(n) time, where n is the number of
vertices in T . The second algorithm is a parallel algorithm
which runs in O(log n) time using O(n/ log n) processors
on EREW PRAM model.

1. Introduction

In network theory, optimally locating a service facil-
ity/infrastructure for communication in a network has long
been of great interest for decades. Due to the variety of fa-
cilities/infrastructures and different criteria for optimality,
abundant optimization problems in networks have been de-
fined and studied. The one that was extensively studied in
the literature is the “core-family” [6, 9, 7, 8]; a path-shaped
or tree-shaped facility which minimizes the sum of the dis-
tances from the facility to all vertices in the network.

However, in some applications for mobile wireless ad
hoc networks, the criteria for optimization are different
from the traditional minimization criteria: Instead of merely
minimizing the cumulative distances, the cumulative dis-
tances plus the weight of the facility, defined as the sum
of the weights of all edges in the facility, should be mini-
mized. The subtree with exactly k leaves that satisfies the
above criteria of optimality in a tree network is called a k-
trunk in this paper. We will show an example application
of k-trunk for efficient multicast in mobile wireless ad hoc
networks in the last section of the paper.

The contributions of this paper are:

1. Show a new type of optimization problem in tree net-
works, namely, k-trunk;

2. Give efficient algorithms, both sequential and parallel
ones, for constructing a k-trunk in a tree network; and

3. Give an example application of the new optimization
problem.

The rest of this paper is organized into five sections. In
Section 2, we give the necessary notation, definitions, and
preliminary results for k-trunk. In Section 3, we give theo-
retical background and basic algorithms for constructing a
trunk (2-trunk) and k-trunk (k ≥ 2) in general. The basic
algorithms in Section 3 are the corner-stones for efficiently
constructing a trunk and a k-trunk. The sequential and the
parallel algorithms for finding a rooted trunk as well as par-
titioning of a rooted tree are presented in Sections 4 and 5,
respectively. We give an application and conclude this pa-
per in the last section.

2. Trunk and k-trunk

Let T = (V,E) be a free tree. The size of T , |T |, is the
number of vertices in V . Each edge e ∈ E has an associated
positive weightw(e). Ifw(e) = 1 for every e ∈ E then T is
unweighted, otherwise weighted. Let T ′ = (V ′, E′), V ′ ⊆
V and E′ ⊆ E, be a subtree in T . Let the weight of T ′,
w(T ′) =

∑

e∈E′ w(e). For any two vertices u, v ∈ V , let
P (u, v) be the unique path from u to v, and let the distance
from u to v, d(u, v) =

∑

e∈P (u,v) w(e). Let the degree of
vertex v ∈ V , denoted as deg(v), be the number of vertices
adjacent to v. A leaf of T is a vertex l ∈ V with deg(l) = 1.
When P = P (u, v), we have w(P) = d(u, v). For v ∈ V ,
we define the distance d(v, T ′) = minu∈V ′ d(u, v), and the
cumulative distance δ(T ′) =

∑

v∈V d(v, T ′). When T ′ is a
single vertex u, we have δ(u) =

∑

v∈V d(v, u).
A k-trunk is a subtree Tk with k leaves in T which mini-

mizes δ(Tk)+w(Tk). Notice that the k-core in [9] is defined
as a subtree Tk with k leaves that minimizes δ(Tk) only. In
Figure 1, a 4-trunk of an example tree is shown in bold lines.

A subtree with two leaves is just a path. we call the path
presented by a 2-trunk T2 trunk. A trunk has simple struc-

ture, and the theory on trunk lays the ground for that of
k-trunk.

Figure 1. An example tree and a 4-trunk

Let N(v) be the set of vertices adjacent to v in T . For
each v ∈ V (T), there are |N(v)| subtrees attached to v
through edges (v, u) ∈ E, where u ∈ N(v). Let ST (u, v)
be the subtree of T attached to v through the edge (v, u).
Notice that ST (v, u) is the subtree of T attached to u
through the edge (u, v) (see Figure 2).

ST (u, v) ST (v, u)u v

Figure 2. ST (v, u) and ST (u, v) in T

In general, the leaves of a k-trunk may not necessarily
be leaves of tree T . For A,B ⊆ V , let A/B = {u|u ∈
A, u 6∈ B}. Let v0 be a leaf of trunk P . By Lemma 1, the
vertices in N(v0)/P must be leaves of T , and the extension
of P to any leaf in N(v) must be a trunk. Similar argument
holds for k-trunk. Therefore, without loss of generality, we
assume that the leaves of a k-trunk are leaves of tree T .

Lemma 1 Let P (v, w) be a path in subtree ST (v, u).
We have δ(P (v, w)) ≥ δ(P (u,w)) + w(v, u) and
δ(P (v, w)) = δ(P (u,w)) + w(v, u) if and only if u is a
leaf.

Proof: From the definition of δ(P), we have δ(P (v, w)) =
δ(P (u,w)) + w(v, u)× |ST (u, v)|. |ST (u, v)| = 1 if and
only if u is a leaf. Therefore, the lemma is true. o

3. Rooted trunk

For efficiently constructing a trunk, we orient the tree T
into a rooted tree Tr with root r. For any vertex v ∈ Tr, we
denote the parent of v as p(v), the subtree rooted at v as Tv ,
and the number of vertices in Tv as |Tv|. Let a rooted trunk
P (r, l0) be a path from root r to leaf l0 which minimizes

δ(P (r, l)) + w(P (r, l)) among all paths from r to leaf l in
Tr. We show that the problem of constructing a trunk in
T can be reduced to the problem of constructing a rooted
trunk in a rooted tree Tr. The following lemmas form the
theoretical background for the reduction.

Lemma 2 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then P (r, l0)∩ P (l1, l2) 6= ∅
for any trunk P (l1, l2) in T .

Proof: Assume that P (r, l0) ∩ P (l1, l2) = ∅ for a trunk
P (l1, l2). Let i be the closest vertex in P (r, l0) to P (l1, l2)
and j the closest vertex in P (l1, l2) to P (r, l0) (see Fig-
ure 3). Let path C = P (l0, i) ∪ P (i, j) ∪ P (j, l2). Since
P (r, l0) is a rooted trunk, δ(P (l0, i)) + w(P (l0, i))) ≤
δ(P (l1, i)) + w(P (l1, i)). Since i is not a leaf, by Lemma
1, we have δ(P (l1, i)) + w(P (l1, i)) < δ((P (l1, j)) +
w(P (l1, j)). Similar, we have δ(P (l0, j)) + w(P (l0, j)) <
δ((P (l0, i)) + w(P (l0, i)). From these equations, we get
δ(P (l0, j)) + w(P (l0, j)) < δ((P (l1, j)) + w(P (l1, j)).
This implies δ(C) +w(C) < δ(P (l1, l2)) +w(P (l1, l2)), a
contradiction to the fact that P (l1, l2)) is a trunk. Therefore,
the lemma must be true. o

r

i

l0 l2

j

l1

Figure 3. P (r, l0) is a rooted trunk in Tr and
P (l1, l2) is a trunk

Theorem 1 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then a rooted trunk in rooted
tree Tl0 , a new orientation of T , is a trunk in T .

Proof: Let P (l0, l′0) be a rooted trunk in Tl0 . Assume
that P (l1, l2) is a trunk in T . From Lemma 2, P (l0, l′0) ∩
P (l1, l2) 6= ∅. Let P (i, j) = P (l0, l′0)∩P (l1, l2), where i is
the vertex in P (i, j) closest to vertices l0 and l1 (see figure
4). Since P (r, l0) is a rooted trunk, we have δ(P (l0, i)) +
w(P (l0, i)) ≤ δ(P (l1, i)) + w(P (l1, i)). Similarly,
Since P (l0, l′0) is a rooted trunk, we have δ(P (l′0, j)) +
w(P (l′0, j)) ≤ δ(P (l2, j))+w(P (l2, j)). Therefore, we get
δ(P (l0, l′0)) + w(P (l0, l′0)) ≤ δ(P (l1, l2)) + w(P (l1, l2)).
We conclude that P (l0, l′0) is a trunk in T . o

From Theorem 1, the problem of constructing a trunk in
T can be solved by Algorithm 1.

Theorem 2 Given a weighted tree T , Algorithm 1 finds a
trunk in T .

l0 l1

i

r

j

l′0 l2

Figure 4. P (i, j) = P (l0, l′0)∩ P (l1, l2)

Algorithm 1 (Find trunk(T))
Input: tree T
Output: a trunk Pl0,l1
begin

1. orient tree T into a rooted tree Tr
with an arbitrary node r;

2. compute δ(l) for all leaf l ∈ Tr;
3. find a rooted trunk P (r, l0) in Tr;
4. re-orient T into a rooted tree Tl0 ;
5. find q rooted trunk P (l0, l1) in Tl0 ;
return P (l0, l1)

end

Proof: Follow directly from Theorem 1. o

In Figure 5, we first show an example tree T with an
arbitrarily selected vertex r in Figure 5(a). Then, in Figure
5(b), we show the rooted tree Tr and a rooted trunk P (r, l0)
in Tr. We have δ(P (r, l0)) + w(P (r, l0)) = 33 + 5 = 38.
Finally in Figure 5(c), we show the rooted tree Tl0 and a
rooted trunk P (l′0, l0) in Tl0 . The path P (l0, l′0) is a trunk in
T , and we have δ(P (l0, l′0)) +w(P (l0, l′0)) = 23 + 8 = 31.

Next, we consider the problem of constructing a k-trunk
(k ≥ 2) in T . We first show some lemmas blow.

Lemma 3 Let Tk be a k-trunk and P (l1, l2) is a trunk.
Then Tk ∩ P (l1, l2) 6= ∅.
Proof: The proof of this lemma is similar to that of Lemma
2 and is omitted. o

Lemma 4 Let Tk be a k-trunk in tree T and k > 2. Then
Tk must contain a trunk.

Proof: Assume that P (l1, l2) is a trunk in T . From
Lemma 3, Tk ∩ P (l1, l2) 6= ∅. First, consider the case
that Tk ∩ P (l1, l2) = {u}, where u is a node in T . We
claim that, for all the k + 2 paths Pi = P (li, u), where
li, 3 ≤ i ≤ k + 2,∈ Tk, δ(Pi) + w(Pi) are the same. If
for some j > 2, δ(Pj) + w(Pj) > δ(P1) + w(P1) then
we construct a subtree T ′k with k-leaves by replacing Pj
with P1. The fact δ(T ′k) + w(T ′k) < δ(Tk) + w(Tk) con-
tradicts to the definition that Tk is a k-trunk. If for some
j > 2, δ(Pj) + w(Pj) < δ(P1) + w(P1) then the fact

(a) T

(b) Tr

l0

38

31 l0

l′0
(c) Tl0

r

r

r

Figure 5. (a) An example tree; (b) a rooted
trunk in Tr; (c) a rooted trunk in Tl0 which
is a trunk in T

δ(P (lj , l2)) + w(P (lj , l2) < δ(P (l1, l2)) + w(P (l1, l2))
contradicts to the definition that P (l1, l2) is a trunk. Similar
argument holds for P2. Therefore, the claim holds. In this
case, the union of any two edge-disjoint paths in k paths,
Pj , j > 2, forms a trunk in T . Next, consider the case that
Tk and P (l1, l2) share a subpath P (u, v). One of two nodes
u and v must be nonleaf (otherwise, P (l1, l2) ⊂ Tk). Let
u be a nonleaf and P (u, l1) is edge-disjoint with Tk. Then
the similar argument as the first case shows that for all paths
Pi = P (u, li), 1 ≤ i ≤ k + 2, δ(Pi) + w(Pi) are the same.
o

The problem of finding a k-trunk can be solved by the
following algorithm (Algorithm 2).

Algorithm 2 (Find k-trunk(T))
Input: tree T
Output: a k-trunk Tk
begin

1. orient tree T into a rooted tree Tr
with an arbitrary node r;

2. compute δ(l) for all leaf l ∈ Tr;
3. find a rooted trunk P (r, l0) in Tr;
4. re-orient T into a rooted tree Tl0 ; and
5. find a partition of Tl0 which is a set of edge-disjoint

paths P = {Pi} such that ∪Pi = Tl0
and δ(Pj) + w(Pj) is a minimum among all paths
that are edge-disjoint with ∪j−1

i=1Pi;
6. Tk = ∪k−1

i=1 Pi;
return Tk

end

Theorem 3 Algorithm 2 finds a k-trunk in T .

Proof: We show it by induction. For k = 2, by Theorem 1,
the algorithm finds a trunk. Assume that it is held for k− 1.
That is, Tk−1 is a (k − 1)-trunk. Then, since Pk is selected
such that δ(Pk) + w(Pk) ≤ δ(P ′) + w(P ′) for all P ′ that
are edge-disjoint with Tk−1. Therefore, by induction, the
algorithm generates a k-trunk Tk. o

It is well known that the orientation of a tree and finding
the kth smallest number in a set of n numbers can be done
in optimal time sequentially and in parallel. Given a rooted
tree Tr, we show in the next two sections how to do the
following operations in optimal time both sequentially and
in parallel:

1. Compute δ(v) for all nodes v ∈ Tr;
2. Construct a rooted trunk in Tr;
3. Partition Tr into a set of edge-disjoint paths P .

4. Sequential algorithms for rooted trunk and
partition

Given a rooted tree Tr, we first show that computing δ(v)
for v ∈ V (T) can be done in O(n) time.

Lemma 5 Given a rooted tree Tr, δ(v) for v ∈ Tr can be
computed in O(n) time.

Proof: The algorithm includes two phases. In Phase 1,
we compute δ(r) by a bottom up (post-order) traversal,
and in Phase 2, δ(v) for v 6= r are computed by a top
down (pre-order) traversal. From the definition of δ, it is
easy to see that δ(r) can be computed in O(n) through

a post-order traversal. Since for any node v, we have
δ(v) = δ(par(v)) +w(v, par(v))× (|Tv| − (n− |Tv|)) =
δ(par(v)) +w(v, par(v))× (2|Tv| −n), δ(v) for all v 6= r
can be computed in O(n) time by a pre-order traversal of
tree Tr. o

For each node v ∈ Tr, we construct a rooted trunk in
subtree Tv recursively as follows: Let v1, . . . , vk be the
children of v in Tr. Let P (li, vi) be the rooted trunk in
subtree Tvi . From the formula δ(P (li, v)) + w(P (li, v)) =
δ(P (li, vi)) +w(P (li, vi))−w(v, vi)× (|Tvi | − 1), the al-
gorithm computes δ(P (li, v)) + w(P (li, v)) and finds the
minimum for all i, 1 ≤ i ≤ k. This is done recursively for
every node in Tr. The path that reaches this minimum for v
is a rooted trunk in subtree Tv . The recursive algorithm is
described formally in Algorithm 3.

Algorithm 3 (Find rooted trunk(Tv))
Input: rooted tree Tv
Output: leaf lv and δ(P (lv, v)) + w(P (lv, v))

/* P (lv, v) is a rooted trunk in Tv . */
begin

if v is a leaf then return ((v, δ(v))
else /* assume vi, 1 ≤ i ≤ s are the children of v. */

for i← 1 to s do
(li, valuei)← Find rooted trunk(Tvi);

endfor
valuev ← min1≤i≤s{valuevi − w(v, vi)×

(|Tvi | − 1)};
lv ← lvj , where valuevj − w(v, vj)×

(|Tvj | − 1) = valuev;
return(lv, valuev);

endif
end

The following figures, Figure 6 and Figure 7, show how
the algorithm work for the example rooted trees in Fig-
ure 5(b) and Figure 5(c), respectively.

Theorem 4 A rooted trunk in a rooted tree Tr can be found
in O(n) time.

Proof: From the definition of rooted trunk and the formula
in Lemma 1, it is easy to see that Algorithm 3 finds a rooted
trunk in Tr. The algorithm performs a post-order traversal
of Tr with O(1) computations per step. Therefore, rooted
trunk in Tr can be found in O(n) time. o

Corollary 1 A trunk in a tree T can be found inO(n) time.

Proof: The rooted Tr can be obtained from an orientation
of tree T in O(n) time. From Theorem 4, finding a trunk in
T takes O(n) time. o

Next, we show how to partition a rooted tree efficiently.
It is a bottom up computing method, similar to that of find-
ing a rooted trunk. For each non-root node v do the fol-

(a) δ(l) of leaf

(b) min

92 96 96

114 114

102 102 102

108 108

102

56 82

60

76728278

64

8894

92 96 96

114 114

102 102 102

108 108

102

42 82

54

76708276

59

8894

38

68

Figure 6. Example #1 for Algorithm 3

108

31

33

9237

76

9696

45

65

82

102 102102

59

82

102

76

94

114 114

31

Figure 7. Example #2 for Algorithm 3

lows: Assume that node v has s children v1, . . . , vs. As-
sume also that each subtree T (vi), 1 ≤ i ≤ s, keeps record
of (Parvi , valuevi , leafvi), where Parvi is a partition of
T (vi)∪{(v, vi)}, P (leafvi , vi) is the rooted trunk of T (vi),
and valevi = δ(P (leafvi , vi)) +w(P (leafvi , vi)). The al-
gorithm finds valuev and leafv as that in Algorithm 3, and
then, path P (leafv, v) is extended to par(v) if v is not the
root. Parv is constructed by union of Parvi , 1 ≤ i ≤ s,
and P (leafv, par(v)) if v is not the root. The details of
the recursive algorithm for partition is formally shown in
Algorithm 4.

In Figure 8, we show a partition of the rooted tree Tl0
in Figure 5(c). In Figure 1, a 3-trunk of the tree T in Fig-
ure 5(b) obtained from the partition in Figure 8 is shown in
Figure 9.

Figure 8. A partition of rooted tree Tl0

l0

l′0

Figure 9. A 3-trunk in T

Theorem 5 Given weighted tree T , a k-trunk can be found
in O(n) time, where n is the number of nodes in T .
Proof: From Algorithms 3 and 4, and our discussion before,
steps 1 - 4 of Algorithm 2 can be done inO(n) time. To find
a k-trunk, we first find the path Pk−1 such that δ(Pk−1) +
w(Pk−1) is the (k−1)th smallest among all paths in Parl0 .
This can be done in O(n) time. Next, we find the paths in
Parl0 such that δ(P) + w(P) ≤ δ(Pk−1) + w(Pk−1) and
let Tk be the union of these paths. It is easy to see that the
union of these paths forms a k-trunk in T . o

Algorithm 4 (Partition(Tv))
Input: rooted tree Tv
Output: triple (Parv, leafv, valuev), where Parv is the set of edge-disjoint paths and union of all paths in

Parv = Tv ∪ {(v, par(v))} if v 6= r, = Tr, otherwise.
begin

if v is a leaf then return ((P (v, p(v)), v, δ(v))
else /* assume vi, 1 ≤ i ≤ s are the children of v. */

for i← 1 to s do
Partition(Tvi);

endfor
valuev ← min1≤i≤s{valuei − w(v, vi)× (|Tvi | − 1)};
leafv ← leafvj , where valuevj − w(v, vj)× (|Tvj | − 1) = valuev;
if v = r then Parv ← ∪si=1Par(vi)
else Parv ← ∪si=1Par(vi) ∪ {P (leafv, p(v))} − {P (leafv, v)};
return(Parv, leafv, valuev);

endif
end

5. Parallel algorithm for finding a k-trunk

The parallel computation model used in this paper is
EREW PRAM. A PRAM consists of a collection of au-
tonomous processors, each having access to a common
memory. At each step, every processor performs the same
instruction, with a number of processors masked out. In
the EREW PRAM model, a memory location cannot be si-
multaneously accessed by more than one process. Parallel
Euler-tour and tree contraction that are the two well known
techniques for parallel computation on trees.

Given a tree T with n nodes, the Euler path of T is a
linear list of 2n−2 directed edges (see Figure 10). It is well
known that, by applying optimal list ranking algorithm [2]
on the Euler path of T , tree T can be oriented into a rooted
tree Tr in O(log n) time using O(n/ log n) processors on
an EREW PRAM. By applying Euler tour technique, |Tv|
for every node v in a rooted tree can also be computed in
O(log n) time using O(n/ log n) processors on an EREW
PRAM.

v

v1 v2 v3

Figure 10. An Euler tour

The tree contraction is a parallel technique on a rooted
tree Tr which reduces Tr in parallel to its root by a se-
quence of vertex removals. In the tree contraction algorithm

of Abrahamson et al. [1], the rooted tree Tr should be pre-
sented as a binary tree through the standard transformation
in which a node v with k > 2 children is presented as a
binary subtree of hight k− 1 with k− 2 dummy nodes of v
(see Figure 11).

dummyv

v1 v2 v3 v1 v2

v3

v

Figure 11. A binary tree presentation of a tree

A tree contraction sequence of length s is defined as a set
of binary trees {BTi|1 ≤ i ≤ s} such that BTi is obtained
from BTi−1 by one of the following two operations:

1. prune(v): leaf v in BTi−1 is removed;

2. bypass(v): a non-root node v with only one child is
removed and the parent of v becomes the parent of the
unique child of v.

Every binary tree has an optimal contraction sequence
of length O(log n) and this sequence can be obtained in
O(log n) time using O(n/ log n) processors on an EREW
PRAM.

Using tree contraction technique, we can show that δ(v),
for all v ∈ V (T), can be computed optimally in parallel.

Lemma 6 Given a rooted tree Tr, |Tv| and δ(v) for all v ∈
V (T) can be computed in O(log n) time using O(n/ log n)
processors on an EREW PRAM.

Proof: We show that δ(v) for all v ∈ V (Tr) can be com-
puted in parallel using tree contraction and tree expansion
(the reverse process of tree contraction) techniques. First,
we show that δ(r) can be computed in parallel using tree
contraction as follows: For binary tree T1 in the sequence
of tree contraction, set f(v) = 1 if v is a leaf; otherwise,
f(v) = 0. While performing prune(v), where v is a leaf in
Ti, we set f(p(v)) = f(p(v)) + w(v, p(v)) × |Tv|. While
performing bypass(v), where v has a unique child u in
Ti, we set f(p(v)) = f(p(v)) + w(v, p(v)) × |Tv| and
w(u, p(v)) = w(v, p(v)) + w(u, v), where (u, p(v)) is a
new edge created by bypass operation. It is easy to see
from the definition of δ that f(r) = δ(r) while tree con-
traction is done. Finally, δ(v) for v 6= r can be computed
in parallel through the tree expansion technique which is
the inverse process of tree contraction. The tree expansion
expands r to Tr through inv prune and inv bypass op-
erations. Initially, we set g(r) = δ(r). While perform-
ing inv prune(v) to create a child u of v, we set g(u) =
g(v)+w(u, v)×(n−2|Tu|) (w(u, v) and |Tu| are kept in v
while performing prune(u)). Similarly, while performing
inv bypass(v), we set g(u) = g(v)+w(u, v)×(n−2|Tu|)
and w(u, z) = w(v, z) − w(u, v), where z is the unique
child of v generated by bypass(u) in tree contraction. From
the formula δ(v) = δ(p(v)) + w(v, p(v) × (n − 2|Tv|), it
is easy to see that after tree expansion is done, g(v) = δ(v)
for every v ∈ Tr. o

To find a rooted trunk of a rooted tree in parallel, we
use the tree contraction to compute in parallel the value
min{δ(P (r, l)) + w(P (r, l))}, where l is a leaf in Tr. For
each node v in Ti, a binary tree in the sequence of trees
generated by the tree contraction, we compute two func-
tions, f(v) and g(v). If v is a leaf in Ti, the value of
function f(v) represents min{δ(P (v, l′)) + w(P (v, l′))},
where lv is a leaf in Tv , the subtree of Tr rooted at v.
Therefore, when tree contraction ends, we have f(r) =
δ(P (r, lr)) + w(P (r, lr)), where P (r, lr) is a rooted trunk
in Tr. The function g(v) is used to adjust the distance sav-
ing created by path extension from v to p(v), where edge
(v, p(v)) is an edge created by the bypass operation. We
will explain this effect in details later.

Initially, in Tr, we set f(v) = δ(v) if v is a leaf, oth-
erwise, f(v) = ∞; g(v) = 0 for all v. Then, for each
prune(v), we should update the value of f(p(v)) by the
formula f(p(v)) = min{f(p(v)), f(v) − w(v, p(v)) ×
(n − |Tv| − 1)}; And, for each bypass(v), we should
update the value of f(p(v)) by the formula f(p(v)) =
min{f(p(v)), f(v) − w(v, p(v)) × (n − |Tv| − 1)} and
give the new edge (u, p(v)) weight w(v, p(v)) + w(u, v)
so that, when perform prune(u) the distance saving for the
path extension from u to p(v) calculated by the formula
w(u, p(v)) × (n − |Tu| − 1) will be correct. However, the
effect of the nodes in Tv on the distance saving due to the

path extension from u to p(v) is over-calculated in the for-
mula (the distance saving due to the path extension for the
nodes in Tv) is w(u, v), not w(u, p(v))). Therefore, a fac-
tor g(u) = w(v, p(v)) × (|Tv| − |Tu|) is needed to com-
pensate this over-calculation. That is, the update formula
for f(p(v)) should be f(p(v)) = min{f(p(v)), f(v) −
w(v, p(v)) × (n − |Tv| − 1)} + g(v). The algorithm is
shown in Algorithm 5.

Figure 12 shows how the algorithm works for the exam-
ple tree Tr in Figure 5(b). Notice that BT3 comes from
BT2 by three bypass operations. We explain the computa-
tions for bypass(v) as shown in trees BT2 and BT3. From
the algorithm, we get f(p(v)) = 72 − (22 − 5 − 1) = 56,
w(u, p(v)) = 1 + 1 = 2, and g(u) = 5 − 3 = 2. Dur-
ing the prune(u) operation in BT3, we get f(p(u)) =
min{56, 88 − 2(22 − 3 − 1) + 2} = 54 in BT4. Finally,
BT6 = {r} comes fromBT5 by a prune operation, and we
get f(r) = min{65, 42− (22− 17− 1) + 0} = 38.

Theorem 6 Given a rooted tree Tr, min{δ(P (r, l)) +
w(P (r, l))}, where l is any leaf in Tr, can be computed in
O(log n) time using O(n/ log n) processors on an EREW
PRAM.

Proof: We apply tree contraction on tree Tr withO(1) addi-
tional computations of functions f and g on Ti, 1 ≤ i ≤ s,
while performing prune and bypass operations. Initially,
we set g(v) = 0 and f(v) = δ(v) if v is a leaf in Tr;
otherwise f(v) = ∞. If v is a dummy node, since v
and p(v) are identical in the original tree, we should set
w(v, p(v)) = 0. While performing prune(v), where v is a
leaf, we set f(p(v)) = min{f(p(v)), f(v) − w(v, p(v)) ×
(n−|Tv|−1)}+g(v), where the compensation factor g(v)
is introduced by the bypass operation as explained before.
The above formula for updating f(p(v)) comes from the
fact δ(p(v)) + w(P (p(v), l) = δ(P (v, l) + w(P (v, l)) −
w(v, p(v))×(n−|Tv|−1) for any path P (v, l) ⊂ Tv . While
performing bypass(v), where v has a unique child u in Ti,
we set f(p(v)) = min{f(p(v)), f(v)− w(v, p(v))× (n−
|Tv| − 1)}+ g(v) and w(u, p(v)) = w(v, p(v)) + w(u, v),
where (u, p(v)) is a new edge created by bypass oper-
ation. We also modify the compensation factor g(v) by
setting g(v) = g(v) + w(v, p(v)) × (|Tv| − |Tu|). Sim-
ilar to the proof for Lemma 3, it is easy to verify that
f(r) = min{δ(P (r, l)) + w(P (r, l))} while tree contrac-
tion is done. o

Corollary 2 A rooted trunk in a rooted tree Tr can be
found in O(log n) time using O(n/ log n) processors on an
EREW PRAM.

Proof: The leaf l0 that achieves the minimum value in The-
orem 3 can be obtained easily with O(1) additional book-
keeping process per vertex while performing prune and
bypass operations. o

Algorithm 5 (Parallel rooted trunk(Tr))
Input: rooted tree Tr
Output: min{δ(P (r, l)) + w(P (r, l))}, where l is a leaf in Tr
begin

In parallel, compute δ(l) for all leaf l ∈ Tr;
Transfer Tr into a binary tree presentation;
for each node v ∈ Tr do

if v is a dummy node then w(v, p(v)) = 0;
if v is a leaf then f(v) = δ(v) else f(v) =∞;
g(v) = 0;

endfor
Perform tree contraction to generate a sequence of binary trees {BTi|1 ≤ i ≤ s}, where BT1 = Tr and BTs = {r};
/* BTi is obtained from BTi−1 by prune(v) and bypass(v) operations. */
for each prune(v) do

f(p(v)) = min{f(p(v)), f(v)− w(v, p(v))× (n− |Tv| − 1)}+ g(v);
endfor
for each bypass(v) do

f(p(v)) = min{f(p(v)), f(v)− w(v, p(v))× (n− |Tv| − 1)}+ g(v);
w(u, p(v)) = w(v, p(v)) + w(u, v); /* u is the unique child of v. */
g(u) = g(u) + w(v, p(v))× (|Tv| − |Tu|)

endfor
return(f(r));

end

dummy

92 96 96

114 114

102

102 102

108 108

102

∞
∞ ∞

∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞

(a) BT1 = Tr (binary)

dummy

∞
∞

∞ ∞

∞

(b) BT2: Prune

82

82

8894

7682 72

∞
∞

∞ 56

82

88 7682

(c) BT3: Bypass

94
2 2

g(u)
= 2

∞

5459

65

(d) BT4: Prune

65
42
(e) BT5: Prune (e) BT6: Prune

38

u

v

Figure 12. A working example for Algorithm 5

Corollary 3 A trunk in a tree T can be found in O(log n)
time using O(n/ log n) processors on an EREW PRAM.
Proof: The orientation of tree T and finding a rooted trunk
in a rooted tree take O(log n) time using O(n/ log n) pro-
cessors on an EREW PRAM. A trunk can be found by per-
forming twice the process of a tree orientation followed by
finding a rooted trunk in the rooted tree. Therefore, the

corollary is true. o

The parallel algorithm for finding a k-trunk is similar to
that of finding a trunk. The difference is that, after second
orientation of tree T into rooted tree Tl0 , we use the follow-
ing Parallel Partition algorithm which is a parallel version
of partitioning T into a set of edge-disjoint paths. Then,

Algorithm 6 (Parallel Partition(Tr))
Input: rooted tree Tr
Output: Par(r) /* Partition of Tr into edge-disjoint paths. */
begin

In parallel, compute δ(l) for all leaf l ∈ Tr;
Transfer Tr into a binary tree presentation;
for each node v ∈ Tr do

if v is a dummy node then w(v, p(v)) = 0;
if v is a leaf

then f(v) = δ(v) else f(v) =∞;
g(v) = 0;

endfor
Perform tree contraction to generate a sequence of binary trees {BTi|1 ≤ i ≤ s}, where BT1 = Tr and BTs = {r};
/* BTi is obtained from BTi−1 by prune(v) and bypass(v) operations. */
for each prune(v) do

f(p(v)) = min{f(p(v)), f(v)− w(v, p(v))× (n− |Tv| − 1)}+ g(v);
if f(v)− w(v, p(v))× (n− |Tv| − 1)}+ g(v) < f(p(v)) then leaf(p(v)) = leaf(v);

endfor
for each bypass(v) do

f(p(v)) = min{f(p(v)), f(v)− w(v, p(v))× (n− |Tv| − 1)}+ g(v);
if f(v)− w(v, p(v))× (n− |Tv| − 1)}+ g(v) < f(p(v)) then leaf(p(v)) = leaf(v);
w(u, p(v)) = w(v, p(v)) + w(u, v); /* u is the unique child of v. */
g(u) = g(u) + w(v, p(v))× (|Tv| − |Tu|)

endfor
Use Euler tour technique to find the node vl closest to the root with leaf(v) = l, for every leaf l ∈ Tr;
Par = ∪l is a leaf and vl 6= r{P (p(vl), l)}
return(Par);

end

the parallel algorithm for finding a k-trunk is described in
Algorithm 6.

Theorem 7 Given weighted tree T , a k-trunk can be found
in O(n/p) time, using p = O(n/ log n) processor on
EREW PRAM, where n is the number of nodes in T and
p ≤ n/ log n.

Proof: From Algorithms 5 and 6 and our discussion above,
steps 1 - 4 of Algorithm 2 can be done in O(n/p) time us-
ing p = O(n/ log n) processors on EREW PRAM. Since
finding path Pk−1 such that δ(Pk−1) + w(Pk−1) is the
(k − 1)th smallest in Parl0 can be done in O(n/p) time
using p = O(n/ log n) processors on EREW PRAM, it is
easy to see from Algorithm 2 that a k-trunk in T can be
found in O(n/p) time using p = O(n/ log n) processors
on EREW PRAM. o

6. An application and concluding remarks

The concept of trunk in tree networks has applications
on efficient multicast for mobile wireless ad hoc networks.
Overlay multicast protocols [3, 4, 5] are used for efficient
multicast at application layer. It constructs a virtual mesh

spanning all member nodes of a multicast group and em-
ploys standard unicast routing to fulfill multicast function-
ality. A spanning tree T on the virtual mesh, an weighted
tree in which the weight of an edge (u, v) is the number of
hops from u to v in the original network, is commonly used
by overlay multicast protocols for efficient multicast.

However, maintaining the spanning tree for mobile ad
hoc networks is expensive. A k-trunk in the tree can be used
to reduced the cost for maintenance due to its simplicity.
Moreover, the parameter k can be computed such that the
maintenance cost and the performance are balanced. The
total cost for multicast using a subtree T ′ contains two parts:
the cost for broadcasting inside T ′ and the cost for unicast-
ing from the nodes inside T ′ to the nodes outside. Formally
speaking, the cost of the first part is

∑

e∈T ′ w(e) and the
cost of the second part is

∑

v∈V (T ′) d(v, P). Therefore, the
problem of finding a subtree Tk with k leaves that mini-
mizes communication cost is exactly the problem of finding
a k-trunk in T . Figure 13 shows a 4-trunk of a spanning tree
on a virtual mesh of size 50 in an ad hoc wireless network
of 100 nodes. The solid cycles in the figure represent the
group members and the trunk is marked with thickest lines.

1

1

1

1

1

11

1

1 1

1

1

1

1

1

1

11 1

1

1
1

1
1

1

1

1
1

1

1

1
1

1
1

1

1

1
1

1 1

1

1

1
1

1

1
1

1

1

0(3,7)

3(0,0)

9(4,9)

c(6,13)

11(3,7)

17(20,35)

18(7,12)

19(47,87)

23(14,22)

24(1,3)

25(11,20)

2c(0,1)

2d(0,1)

31(0,1)

39(75,116)

44(0,1)

46(0,1)

4b(0,1)

4d(0,1)

4e(0,1)

4f(0,1)

58(0,1)

5c(0,1)

64(7,12)

67(0,1)

6f(0,1)

70(0,1)

71(0,1)

72(0,1)

73(0,1)

77(0,1)

80(0,1)

82(0,1)

89(0,1)

8e(0,1)

93(0,1)

99(0,1)a4(0,1)

a7(0,1)

a8(0,1)aa(0,1)

ac(0,1) b0(0,1)

b3(0,1)

b5(0,1)

bb(0,1)

c0(0,1)

c2(0,1) c4(0,1)

c7(0,1)

Figure 13. A 4-trunk of a spanning tree on virtual mesh

Some possible future work are as follows: To develop
distributed algorithms that run asynchronously and use lo-
cal information only, for constructing a k-trunk in tree net-
works; and to develop communication algorithms based on
the algorithms proposed in this paper for applications on
wireless ad hoc networks and do simulations for perfor-
mance analysis. For example, multicast in wireless sensor
networks in which the cost to be minimized is the energy
used due to the fact that each node in a sensor network has
very limited amount of energy supported by a portable bat-
tery.

References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przy-
tycka. A simple parallel tree contraction algorithm. Journal
of Algorithms, 10(2):287–302, Jun. 1989.

[2] R. Cole and U. Vishkin. Approximate parallel scheduling.
part i: The basic technique with applications to optimal par-
allel list ranking in logarithmic time. SIAM Journal of Com-
puting, 17(1):128–142, 1988.

[3] C. Cordeiro, H. Gossain, and D. Agrawal. Multicast over
wireless mobile ad hoc networks: Present and future direc-
tions. IEEE Network, 17(1):52–59, Jan. 2003.

[4] C. Gui and P. Mohapatra. Efficient overlay multicast for mo-
bile ad hoc networks. In Proceedings of IEEE Wireless Com-
munications and Networking Conference (WCNC2003), Mar.
2003.

[5] J. Janotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. O’Toole. Overcast: Reliable multicasting with an over-
lay network. In Proceedings of 4th Symp. Operating Systems
Design and Implementation, pages 197–212, Oct. 2000.

[6] C. A. Morgan and P. J. Slater. A linear algorithm for a core of
a tree. Journal of Algorithms, 1(3):247–258, 1980.

[7] S. Peng and W. Lo. A simple optimal parallel algorithm for a
core of a tree. Journal of Parallel and Distributed Computing,
20(3):388–392, 1994.

[8] S. Peng and W. Lo. Efficient algorithms for finding a core
with a specific length. Journal of Algorithms, 20(3):445–458,
1996.

[9] S. Peng, A. B. Stephens, and Y. Yesha. Algorithms for a core
and k-tree core of a tree. Journal of Algorithms, 15(1):143–
159, Jul. 1993.

