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Abstract

Square root operation is hard to implement on FPGAs
because of the complexity of the algorithms. In this pa-
per, we present a non-restoring square root algorithm and
two very simple single precision floating point square root
implementations based on the algorithm on FPGAs. One
is low-cost iterative implementation that uses a traditional
adder/subtractor. The operation latency is 25 clock cy-
cles and the issue rate is 24 clock cycles. The other is
high-throughput pipelined implementation that uses multi-
ple adder/subtractors. The operation latency is 15 clock cy-
cles and the issue rate is one clock cycle. It means that the
pipelined implementation is capable of accepting a square
root instruction on every clock cycle.

1. Introduction

Addition, subtraction, multiplication, division, and
square root are five basic operations in computer graph-
ics and scientific calculation applications. The operations
on integer numbers and floating point numbers have been
implemented with standard VLSI circuits. Some of them
have been implemented on FPGAs based custom computing
machines. Shiraziet al presented FPGA implementations
of 18-bit floating point adder/subtractor, multiplier, and di-
vider [17]. Loucaet al presented FPGA implementations
of single precision floating point adder/subtractor and mul-
tiplier [10].

Because of the complexity of the square root algorithms,
the square root operation is hard to implement on FPGAs
for custom computing machines. In this paper, we present
two very simple single precision floating point square root
implementations on FPGAs based on a non-restoring square
root algorithm. The first is a low-cost iterative implemen-
tation that uses only a single conventional adder/subtractor;
the second is a fully pipelined implementation that is ca-

pable of accepting a square root instruction on every clock
cycle.

We first review the various square root algorithms briefly.
Then we introduce the non-restoring square root algorithm,
based on which two single precision floating point square
root implementations on FPGAs are presented here. Finally,
we give the conclusion remarks.

2. Square Root Algorithms

The square root algorithms and implementations have
been addressed mainly in three directions:Newton-Raphson
method [4] [6] [12] [15],SRT-Redundantmethod [2] [3] [8]
[11] [14], andNon-Redundantmethod [1] [5] [7] [9] [13].

The Newton-Raphson method has been adopted in
many implementations. In order to calculateY =√
X, an approximate value is calculated by iterations.
For example, we can use the Newton-Raphson method
on f (T ) = 1/T 2 −X to derive the iteration equation
Ti+1 = Ti × (3 − T 2

i ×X )/2 , whereTi is an approx-
imate value of 1/

√
X. After n-time iterations, an

approximate square root can be obtained by equation
Y =
√
X ' Tn ×X .

The algorithm needs a seed generator for generatingT0 ,
a ROM table for instance. At each iteration, multiplica-
tions and additions or subtractions are needed. In order to
speed up the multiplication, it is usual to use a fast parallel
multiplier, Wallace tree for example, to get a partial produc-
tion and then use a carry propagate adder (CPA) to get the
production. Because the multiplier requires a rather large
number of gate counts, it is impractical to place as many
multipliers as required to realize fully pipelined operation
for square root instructions. If it is not impractical, at least
it is at high cost. In the design of most commercial RISC
processors, a multiplier is shared by all iterations of mul-
tiplication, division, and square root instructions. This be-
comes an obstacle of exploiting instruction level parallelism
for multi-issued processors. And also, it will be a hard task



to get an exact square root remainder.
The classical radix-2 SRT-Redundant method is based

on the recursive relationshipXi+1 = 2Xi − 2Yiyi+1 −
y2
i+12−(i+1), Yi+1 = Yi + yi+12−(i+1), whereXi is ith

partial remainder (X0 is radicand),Yi is ith partially devel-
oped square root withY0 = 0, yi is ith square root bit, and
yiε{−1, 0, 1}. Theyi+1 is obtained by applying the digit-
selection functionyi+1 = Select(X̃i), or for high-radix
SRT-Redundant methods,yi+1 = Select(X̃i, Ỹi), where
X̃i and Ỹi are estimates obtained by truncating redundant
representations ofXi andYi, respectively.

In each iteration, there are four subcomputations. (1)
One digit shift-left ofXi to produce2Xi. (2) Determination
of yi+1. (3) Formation ofF = −2Yiyi+1 − y2

i+12−(i+1).
(4) Addition of F and2Xi to produceXi+1. A CSA can
be used to speedup the addition ofF and 2Xi. But, the
F needs to be converted to the two’s complement repre-
sentation in order to be fed to the CSA. Moreover, for the
determination ofyi+1, the selection function is rather com-
plex, especially for high-radix SRT algorithms, although it
depends only on the low-precision estimates ofXi andYi.
At the final step, a CPA is needed to convert the square
root from the redundant representation to the two’s comple-
ment representation. Since the complexity of the circuitry,
some of the implementations use an iterative version, i.e.,
all the iterations share same hardware resources. Conse-
quently, the implementations are not capable of accepting
a square root instruction on every clock cycle. Notice that
this method may generate a wrong resulting value at the last
digit position, because it satisfiesXi ≤ 2(Yi + 2−(i+1)),
while a correctYi should satisfyXi ≤ 2Yi.

The Non-Redundant method is similar to the SRT
method but it uses the two’s complement representation
for square root. The classical Non-Redundant method is
based on the computationsRi+1 = X − Y 2

i , Yi+1 =
Yi + yi+12−(i+1), whereRi is ith partial remainder,Yi is
ith partial square root withY1 = 0.1, andyi is ith square
root bit. The resulting value is selected by checking the
sign of the remainder. IfRi+1 ≥ 0, yi+1 = 1; other-
wise yi+1 = −1. The computations can be simplified by
eliminating the square operation by variable substitution
on Xi+1 = (X − Y 2

i )2i: Xi+1 = 2Xi − 2Yiyi + y2
i 2−i,

Yi+1 = Yi + yi+12−(i+1), whereXi is ith partial remain-
der (X1 is radicand).

Different from the SRT methods, the resulting value
selection is doneafter the Xi+1’s calculation, while the
SRT methods do itbeforetheXi+1’s calculation. It may
also generate a wrong resulting value at the last bit posi-
tion, and need to convert such anF = −2Yiyi + y2

i 2−i to
get one operand that will be added to2Xi. Some Non-
Redundant algorithms were said to belong to “restoring”
or “non-restoring”. For example, the one described above
is said to be a non-restoring square root algorithm. But in

fact, the word of restoring (non-restoring) means the restor-
ing (non-restoring) onsquare root, but notremainder.

3. The Non-Restoring Square Root Algorithm

The non-restoring square root algorithm also uses the
two’s complement representation for the square root re-
sult. It is a non-restoring algorithm that does not restore
the remainder [9]. At each iteration the algorithm gener-
ates an exact resulting value, even in the last bit position.
There is no need to do theF conversion and the calcula-
tion of Yi − 2−(i+1) that appear in the SRT-Redundant and
other Non-Redundant methods. An exact remainder can be
obtained immediately without any correction if it is non-
negative or with an addition operation if it is negative.

Assume that the radicand is denoted by a 32-bit
unsigned number: D = D31 D30 D29 ...D1 D0 . The
value of the radicand isD31 × 231 +D30 × 230 +D29×
229 + ...+D1 × 21 +D0 × 20. For each pair of bits
of the radicand, the integer part of square root has
one bit. Thus the integer part of square root for a
32-bit radicand has 16 bits:Q = Q15Q14Q13...Q1Q0.
The remainderR = D −Q×Q has at most 17 bits:
R = R16R15R14...R1R0.

The reason of whyR has at most 17 bits is explained
as below. We have the equationD = (Q×Q+R) <
(Q+ 1)× (Q+ 1). Thus,R < (Q+ 1)× (Q+ 1)−Q×
Q = 2×Q+ 1, i.e.,R ≤ 2×Q because the remainderR
is an integer. It means that the remainder has at most one
binary bit more than the square root.

Because we do not use redundant representation for
square root, an exact bit can be obtained in each iteration.
This makes the hardware implementation simple. Addition-
ally, an exact remainder can be obtained although it is rarely
requested by real applications. The non-restoring square
root algorithm using non-redundant binary representation is
given below.

1. Setq16 = 0, r16 = 0 and then iterate fromk = 15 to 0.
2. If rk+1 ≥ 0, rk = rk+1D2k+1D2k − qk+101,

else rk = rk+1D2k+1D2k + qk+111,
3. If rk ≥ 0, qk = qk+11 (i.e.,Qk = 1),

else qk = qk+10 (i.e.,Qk = 0),
4. Repeat steps 2 and 3, untilk = 0.

If r0 < 0, r0 = r0 + q01.

where qk = Q15Q14...Qk has (16− k) bits, e.g.,
q0 = Q = Q15Q14Q13...Q1Q0, and rk has (17− k)
bits, e.g.,r0 = R = R16R15R14...R1R0. Notice that
rk+1D2k+1D2k means rk+1 × 4 +D2k+1 × 2 +D2k.
Similarly, qk+11 meansqk+1 × 2 + 1. The multiplications
and additions are not needed. Instead, we use shifts and
concatenations by suitable wiring. It can be found that the
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algorithm needn’t do any conversion before the addition or
subtraction.

Let us see an example in whichD =
D7D6D5D4D3D2D1D0 = 01111111 is an 8-bit rad-
icand, henceQ will be a 4-bit square root. The example is
illustrated below. We getQ = 1011 andR = 00110.

Setq4 = 0, r4 = 0 and then iterate fromk = 3 to 0.
k = 3 :
r4 ≥ 0, r3 = r4D7D6 − q401 = 001− 001 = 000,
r3 ≥ 0, q3 = 1 (i.e.,Q3 = 1),
k = 2 :
r3 ≥ 0, r2 = r3D5D4 − q301 = 0011− 0101 = 1110,
r2 < 0, q2 = q30 = 10 (i.e.,Q2 = 0),
k = 1 :
r2 < 0, r1 = r2D3D2 + q211 = 11011 + 01011 = 00110,
r1 ≥ 0, q1 = q21 = 101 (i.e.,Q1 = 1),
k = 0 :
r1 ≥ 0, r0 = r1D1D0 − q101 = 011011− 010101 = 000110,
r0 ≥ 0, q0 = q11 = 1011 (i.e.,Q0 = 1),
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Figure 1. A very-low cost circuitry for integer
square root.

An iterative low-cost version of the circuit design for a
32-bit radicand is shown in Fig. 1. The 32-bit radicand is
placed in registerD. It will be shifted two bits left in each
iteration. RegisterQ holds the square root result. It will be
shifted one bit left in each iteration. RegisterR (combina-
tion ofR2 andR0) contains the partial remainder. Registers
Q andR are cleared at the beginning. A 16-bit conventional
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Figure 2. Verilog simulation of the square
root circuitry.

adder/subtractor is required. It subtracts if the control input
is 0, otherwise it adds. The three gates (OR, XNOR, and
INV) performD2k+1D2k−01 orD2k+1D2k+11. Because
the carry is high-active for addition and low-active for sub-
traction, we can simplify the operations ofD2k+1D2k − 01
andD2k+1D2k + 11 just by using the three gates.

The circuitry is very easy to be implemented on FPGAs.
For example, we can use Xilinx xc4000 ADSU16 as the
adder/subtractor. Fig. 2 illustrates a Verilog simulation re-
sult for the circuitry. In the figure, the 32-bit radicand with
the name ofIN<31:0> is b97973ef (hexadecimal). The
square root result with the name ofSQ<15:0> is d9e7
(hexadecimal). Notice that the registerQ andR should be
cleared once the radicand is loaded into registerD. After
the radicand is loaded, the iteration starts.

4. A Parallel-Array Implementation

Some applications may need a square root unit with high
throughput. In this section, we present a parallel-array im-
plementation of the non-restoring square root algorithm.

Because, for binary numbersA andB, A − B = A +
(−B) = A+B+1, we can replace−qk+101 with +qk+111.
Except for the first-time iteration, we have a new presenta-
tion of the statement 2 of the algorithm as below.

If Qk+1 = 1, rk = rk+1D2k+1D2k + qk+111,
else rk = rk+1D2k+1D2k + qk+111.

We replaced the condition of “ifrk+1 ≥ 0” with the one
“if Qk+1 = 1” except for the first-time iteration. The first-
time iteration always subtracts001 from (or adds111 to)
0D31D30.

If Qk+1 = 1, theqk+1 is equal toqk+21. So theqk+111
can be replaced withqk+2011. Similarly, if Qk+1 = 0, the
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Figure 3. PASQRT – parallel array for square root.

+qk+111 can be replaced with+qk+2011. Now, the algo-
rithm turns to

1. Always r15 = 0D31D30 + 111,
2. If r15 ≥ 0, q15 = 1 (i.e.,Q15 = 1),

else q15 = 0, (i.e.,Q15 = 0),
3. iterate fromk = 14 to 0,
4. IfQk+1 = 1, rk = rk+1D2k+1D2k + qk+2011,

else rk = rk+1D2k+1D2k + qk+2011,
5. If rk ≥ 0, qk = qk+11 (i.e.,Qk = 1),

else qk = qk+10 (i.e.,Qk = 0),
6. Repeat steps 4 and 5, untilk = 0.

If r0 < 0, r0 = r0 + q01.

The first two steps are only for dealing with the first iter-
ation, i.e., for calculating ther15 andq15. The carry-save
adders can be used to form a parallel-array implementation
as shown as in Fig. 3. We call it asparallel array for square
rooting (PASQRT). The XOR gates in the figure are used to
implementqk+2 or qk+2 based onQk+1. The+011 needn’t
use CSAs, it can be simplified.

For determination ofQk, it is needed to know the sign of

the partial remainderrk. Because the remainder has at most
one binary bit more than the square root, we just need to
check theR17−k bit of therk. The carry-lookahead circuit
can be used here with some simplification. The following is
an example of determination ofQ11 (Fig. 4).
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Figure 4. Determination of square root bit.
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Q11 = A6 ⊕B6 ⊕ C5

C5 = G5 + P5 ·G4 + P5 · P4 · P3 · C2

Gi = Ai ·Bi
Pi = Ai +Bi
C2 = D24 · (D23 +D22)

whereAi andBi are the outputs of CSA,Ai is sum andBi
is carry.C5 is the carry-out when adding the low6 bits of
A andB. In theC5 equation, there is noP5 · P4 ·G3 term
becauseB3 = 0. C2 can be formed directly from the radi-
cand. Generally, for the determination ofQk, the functions
are as the following.

Qk = A17−k ⊕B17−k ⊕ C16−k
C16−k = G16−k + P16−k ·G15−k + ...+

+P16−k · P15−k · ... · P3 · C2

Gi = Ai ·Bi (G3 = 0)
Pi = Ai +Bi (P3 = A3)
C2 = D2k+2 · (D2k+1 +D2k)

The circuit is simpler than a carry-lookahead adder
(CLA) because the CLA needs to generate all of the carry
bits for fast addition, but here, it requires to generate only
a single carry bit. TheC16−k needs a large fan-in gate.
This would not be suitable for common precharge/discharge
circuit implementation. To solve this problem, we can
adopt an unconventional fast, large fan-in circuit. It was
developed by Rowen, Johnson, and Ries [16] and used in
MIPS R3010 floating point coprocessor for divider’s quo-
tient logic, fraction zero-detector, and others.

Unfortunately, we could not find a method to implement
such unconventional circuit on FPGAs, especially on Xilinx
xc4000 family. Instead, we investigated to use the “ded-
icated high-speed carry-propagation circuit” the xc4000
family provided.

5. Implementations of Single Precision Float-
ing Point Square Root on FPGAs

The value of a normalized single precision floating point
numberD is (−1)s × (2e−127)× (1.f), wheres is sign,e
is biased exponent, andf is fraction. In our implementation,
we consider only the non-negative radicand and square root.
The (1.f) will be shifted one- or zero-bit left so that the
new exponente′ makese′ − 127 even. The resulting biased
exponent will be(e− 127)/2 + 127. We can use an adder
to do it because

(e− 127)/2 + 127 = e/2 + 63 + e%2,

where% denotes a modular operation, i.e.,e%2 is the least
significant bit ofe. The shifted fraction will be1x.xx...xx
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Figure 5. A low-cost implementation of
floating-point square root.

or 01.xx...xx. In the both cases, the resulting value ofQ
will be 1.yy..yy. This means that the resulting fraction is
already normalized. If the unit deals with subnormal (de-
normalized) numbers, a normalization stage will be needed
at the final stage. Notice that zeros are needed to be attached
to the fraction in order to obtain enough bits of the square
root.

Fig. 5 shows a low-cost implementation of the single-
precision floating-point square root unit. After loading data
into registerD, twenty-four clock cycles are needed for
generating a 24-bit result.

Fig. 6 shows a pipelined implementation of the single-
precision floating-point square root unit. We used the “high-
speed carry-propagation circuit” (cy4) in the design. Be-
cause the high-order square root bits can be generated very
fast, it is not necessary to use a whole pipeline stage for one
bit. We divide the calculations ofQk, (k = 23, 22, ..., 1, 0),
into 15 pipeline stages as shown in Tab. 1. Pipeline regis-
ters are placed between the stages. The implementation is
fully pipelined and capable of accepting a new square root
instruction on every cycle.

A comparison of the latency, issue rate, and cost required
by the two implementations is listed in Tab. 2. It can be
found that the iterative implementation requires few area
(the CLB function generators is almost equal to the area re-
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Table 1. Clock cycles required for calculating Q23 .. Q0

Result bits Q23 .. Q18 Q17..Q15 Q14..Q13 Q12 .. Q11 Q10 .. Q0

Adder bits 1 .. 6 7 .. 9 10 .. 11 12 .. 13 14 .. 24
Clock cycles 1 1 1 1 11

Table 2. Cost/performance comparison of two FPGA implementations

Performance Cost (Xilinx xc4000 CLB)
Latency (cycles) Issue (cycles) CLB function generators CLB flip-flops

Iterative 25 24 82 138
Pipelined 15 1 408 675
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Figure 6. A pipelined implementation of
floating-point square root.

quired by the two adders), and the pipelined implementation
achieves high performance at a reasonable cost (about five
times compared to that of the iterative implementation).

6. Conclusion Remarks

Two single precision square root implementations on FP-
GAs, based on a non-restoring algorithm, were presented
in this paper. The iterative implementation requires few
area, and the pipelined implementation achieves high per-
formance at a reasonable cost. Both the implementations
are very simple, which can be readily appreciated.

The modern multi-issued processors require multiple
dedicated, fully-pipelined functional units to exploit in-
struction level parallelism, hence the simplicity of the func-
tional units becomes an important issue. The proposed im-
plementations are shown to be suitable for designing a fully
pipelined dedicated floating point unit on FPGAs.
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