
The Second European IASTED International Conference on Parallel and Distributed Systems, July 1–3, 1998, Vienna, Austria, pp.80–86

JAViR – Exploiting Instruction Level Parallelism for JAVA Machine by Using
Virtual Registers

Yamin Li?, Sanli Li ?†, Xianzhu Wang†, and Wanming Chu?

?Department of Computer Hardware,
University of Aizu,

Aizu-Wakamatsu, 965-8580 Japan

†Department of Computer Science,
Tsinghua University,

Beijing, 100084 China

Abstract

Java Virtual Machine architecture is a stack based archi-
tecture. Because most Java instructions can operate only on
the top of the stack, it is difficult to exploit instruction level
parallelism (ILP). In this paper, we introduce a new kind
of storage, named virtual register (VR), working together
with the stack, to provide a simultaneous access mechanism
for a wide-issue high-performance JAViR (Java processor
Architecture with Virtual Register) design. The VR is trans-
parent to programmers and compilers. At runtime, the de-
pendences of Java bytecode sequence are checked and VR
is used for presenting the dependences. Instead of access-
ing the top of the stack, most arithmetic instructions can get
source operands from VR, and write results to VR. Because
of the wide accessibility of the VR, it is possible for JAViR to
execute more instructions in parallel in a clock cycle than
that of stack based Java processors. Simulations show that
the new JAViR processor could achieve the performance of
average 2.89 EIPC (effective instructions per cycle) with a
16-instruction scheduling window or 4.01 EIPC with a 64-
instruction window.

1. Introduction

Java language [1] has been widely accepted as a network
computing oriented language with rapid development of In-
ternet and Intranet. Java Virtual Machine (JVM) [2] is a
platform for running Java bytecode. In order to implement
the standard JVM in the existed computers with different
architectures, the computers have to interpret or recompile
the Java bytecode with their own instruction sets.

However, because of the differences between the JVM
and the existed computer architectures, the running effi-
ciency of Java program is rather low. For the purpose of
increasing the performance of JVM, Sun Microsystems has
announced hardware solutions, PicoJava 1 and 2 (the core
of MicroJava 701) [3] [4]. They are stack based processors,

and, they do not address the issue of instruction level paral-
lelism (ILP).

PicoJava aims at low cost embedded applications. How-
ever, with the increasing requirement of high-performance
network computing with JAVA, it is necessary to consider
the ILP issue for high-performance Java processor archi-
tecture. Actually, modern high-performance processors all
employ the dynamic instruction scheduling for exploiting
the ILP, such as out-of-order execution, register renaming,
branch prediction, speculative execution and etc.

JVM architecture is a stack based architecture. Most
Java arithmetic instructions operate only on the top of the
stack. This feature makes the Java bytecode more efficient
for its transmission over internet. But meanwhile, it also
makes parallel execution of the Java bytecode more difficult
because the stack top becomes a bottleneck for performance
improvement.

We have investigated the use of virtual register (VR) ar-
chitecture in Java processor design. The original virtual
register architecture [8] is different from the conventional
register-oriented RISC architecture. In the VR architecture,
the data flow is not represented by register numbers (the reg-
ister numbers do not appear in instruction set). Instead, the
data flow is represented by the dependences of instructions,
i.e., the specifiers of source operands refer to the locations
(denoted by offsets to the current instruction) where the in-
structions generate results. Thus this original virtual regis-
ter architecture does not keep the RISC binary compatibil-
ity. When the program is being executed, the required lo-
cations for saving instructions’ results with VR are dynam-
ically allocated (generation) and released (death) with the
control of reference counters. A reference counter records
the life-time of a result. The VR technique can eliminate
false dependences caused by static register allocation and
reuse of registers.

In this paper, we introduce a Java processor architecture
using the VR technique – JAViR (Java processor Architec-
ture with Virtual Register), that keeps the Java bytecode’s
compatibility. Different from the traditional RISC proces-
sors, Java bytecode does not use the register numbers in its

80



instruction set, this is why the VR technique can be easily
applied to Java processor design while keeping the compat-
ibility with the Java bytecode. Simulation results show that
the JAViR could achieve the performance of average 2.89
EIPC (effective instructions per cycle)when the size of in-
struction scheduling window is 16 instructions. The EIPC
is calculated by dividing the total number of executed ef-
fective instructions by the total number of required clock
cycles, where the effective instructions are the instructions
that enter into instruction scheduling unit (ISU), and are ex-
ecuted by integer units or floating point units. The following
instructions do not enter the ISU, and therefore are not in-
cluded in the effective instructions: unconditional branches,
method invocations and returns, stack instructions, and lo-
cal variable instructions. The JAViR could furthermore
achieve the performance of average 4.01 EIPC when the
size of instruction scheduling window is 64 instructions.

In section 2, we discuss some JVM features that can be
used in the development of ILP. In section 3, we explain
how to implement the VR technique in Java processor de-
sign. In section 4, we show the simulation results, and in
section 5 we draw our conclusions.

2. The Useful Features of JVM Architectures
for Exploiting ILP

Although JVM architecture is a stack based architecture
and the stack top of Java processor becomes bottleneck for
exploiting parallel execution of Java instructions, we found
that many other features of JVM specification are actually
useful for exploiting the ILP. Such features can be used with
VR technique to alleviate the performance restrictions of the
stack top.

These features come mainly from the operands’ storage
methods and operand reference modes. In the following,
we investigate the differences of the operand types and ref-
erence modes between the conventional processor architec-
ture and the JVM architecture, then we compare their influ-
ences on use of VR technique.

In the JVM, thelocal variablesandtemporary variables
are located in operand stack. Most Java instructions are
temporary variable oriented. This kind of instructions get
operands from the stack, operate on them, and then push
the results onto the stack.

When the operations require accessing the local vari-
ables,lload-alike instructions will be used to load the val-
ues of the local variables onto the operand stack (temporary
variables); andlstore-alike instructions store values of the
temporary variables from the operand stack into local vari-
ables. The JVM employs this method to designate operands
with zero-bit field in the arithmetic instructions, thus it re-
duces the instruction average length, as well as it reduces
the transmission time for Java bytecode on network.

The temporary variable access method identifies the life-
time period of a temporary variable. When it is pushed onto
the stack, the life-time begins; when it is popped from the
stack, the life-time ends. According to the situation of the
temporary variable generation and usage, it is easy to con-
struct a dataflow relationship among instructions, i.e. the
dependency relationship. With the VR technique, it is also
easy to map the temporary variable onto a virtual register.
However, if we use the traditional superscalar structures to
explore the ILP for high-performance Java processors, the
pointer of the stack will become a bottleneck for perfor-
mance improvement. Meanwhile the use of explicitly as-
signed register numbers in their instruction sets make the
determination of a variable’s life-time very difficult.

Java is an object-oriented language,the method invo-
cations (equivalent to function, procedure, or subroutine
calls in structured languages) occur very frequently. The
JVM creates a method frame with variable size for each
method at runtime. The frame contains the parameters for
the method and local variables. In order to eliminate the
unnecessary parameter passing between methods, the stack
is constructed to allow overlap between the methods, to en-
able direct parameter passing without requiring any coping
of the parameters. This structure overcomes the disadvan-
tages of the register reuse in the global register file architec-
ture (e.g. Power PC, Alpha and etc). Furthermore, it avoids
from the shortcomings of rigid structure in cyclic overlap-
ping register windows architecture in which the size of each
window is fixed (e.g. SPARC).

The JVM architecture demonstrates its object-oriented
features of Java language. Similar to traditional RISC ar-
chitectures, the JVM memory reference instructions also in-
cludeload andstoreinstructions, but along with significant
differences in accessing modes.

Usually, RISC architectures have two kinds of address-
ing modes: direct addressing and index addressing (we
don’t distinguish between an index register and a base reg-
ister). However, the real situation is that, in most applica-
tion programs, there is a large amount of instructions using
index addressing mode because of the inability of direct ad-
dressing mode for accessing the whole address space. Us-
ing index addressing mode makes the instruction scheduling
unit encountering a lot of unknown memory addresses dur-
ing program executions, thus it hampers efficient instruc-
tion scheduling for exploiting ILP. There are three kinds of
memory addressing modes in JVM:

Array element access: An element of an array is accessed
by an array access reference address followed by an ele-
ment index (array, index). Both the array access reference
address and the element index are variables.

Object field access: A field of an object is accessed by
an object access reference address followed by a field offset
(object, member). The object access reference address is a

81



variable, but the field offset is a constant which can be put
in the instruction code.

Static field access: A static field is accessed directly by
the static field reference address (address). The address is
in the constant pool, and instructions provide the index to
the constant pool.

Cross-boundary access and operation on data with differ-
ent types are not permitted. Therefore, many dependences
of memory reference can be detected according to the in-
struction opcodes and their data types before all the memory
addresses are calculated. The following are the rules for de-
pendency detection: (1) There is no dependency for instruc-
tions with different addressing modes. (2) There is no de-
pendency for instructions with different data types; (3) For
the object field accesses, if the object reference addresses
or field offsets are different, then dependency doesn’t exist.
(4) For the static field accesses, if theaddressesare differ-
ent, then dependency doesn’t exist. (5) For the array object
accesses, if the array reference addresses or element indices
are different, then dependency doesn’t exist.

Having these dependency detection rules, a lot of non-
dependences can be discovered in advance. It not only im-
proves the effect of instruction scheduling, but also simpli-
fies the design of dynamic scheduling unit for memory ref-
erence instructions.

By applying these rules with the virtual register tech-
nique, the new Java processor, JAViR, can achieve high-
performance while keeping the Java bytecode compatibil-
ity.

3. Exploring the ILP by Using VR Technique

For the wide-issue high-performance Java processor de-
sign, we introduce thevirtual register(VR) technique which
can provide a wide-access mechanism for parallel execution
of multiple instructions. The VRs are notarchitecturalreg-
isters, that is, the VRs are transparent to programmers and
compilers, thus the Java bytecode’s compatibility will be
kept. At runtime, the dependences of Java instruction se-
quence are checked and the VRs are used for presenting the
dependences. Instead of heavily accessing the top of the
stack, most arithmetic instructions can get source operands
from the VRs, and can write results to the VRs. Because
of the wide accessibility of the VR, it is possible for the
new processor to execute more instructions in parallel in a
clock cycle than that of solely stack based Java processors.
We refer to the Java processor architecture that adopts the
VR technique as JAViR (Java processor Architecture with
Virtual Register).

Before describing the hardware architecture of JAViR,
let us introduce some basic concepts used in JAViR. In-
structions are scheduled in anInstruction Scheduling Win-
dow (ISW). The virtual registers are just labels used to de-

Allocate a virtual register A.VR for instruction A.
A’s reference counter A.CNT = 1.

Get A’s source operands (refer to Fig.2).
Execution.

Is A going
to retire from Instruction Scheduling 

Window?

Allocate a physical register
A.PR, write result to A.PR

Write result
to the stack

Is
any reservation station (RS) waiting

A.VR?

Pass result to the RS

end

no

yes

no

yes

Arithmetic instructions

A.CNT=0?
yes

no

Figure 1. Execution of arithmetic instructions

note the dependency among instructions. Functional units
in JAViR are provided with somereservation stations(RSs).
The VRs are mainly used for broadcasting execution result
to the RSs. In some cases, after a result is forwarded to
RSs, it will never be used later. So we can eliminate this
VR. When a result will also be used later, we have to store
it in a location of real storage. First, it is tried to allocate a
physical register(PR) to store the result. If the instruction
which has generated the result is going to leave the instruc-
tion scheduling window, the result will be pushed onto the
stack. In order to know whether a result will be used later
or not, we need areference counterto record the life-time
of the result. The initial value of the counter will be set to
1. Thedup-alike instructions increase the counter, it means
that one result will be referred twice. Once a reference oper-
ation happens, the counter is decreased. If a counter reaches
zero, then the result will never be used later (dead). In this
case, the VR or PR where the result stays can be released.
So the reference counters are mainly used to maintain the
VRs and PRs.

Fig. 1 illustrates the execution procedure of an arith-
metic instruction. A typical arithmetic instruction pops two
source operands from the top of the stack, operates on them,
and pushes the result onto the top of the stack. By using the
VR mechanism, instead of pushing result onto the top of
the stack, first, a VR is allocated for the instruction. The

82



Is B in
instruction scheduling

window (ISW)?

Get operand
from The stack

Did
B finish

execution?

Get operand from B.PR A.RS=B.VR

Release B.VRRelease B.PR

B.CNT-1

B.CNT=0?

no

yes

no

yes

B.CNT-1

B.CNT=0?
yes yes

end

no no

Is C in ISW?

Get A’s source operands, A depends on B, C.

Figure 2. Getting source operands

instruction also tries to get source operands from VRs or
from PRs (see Fig. 2). Once the VR or PR is accessed, its
reference counter will be decreased. The VR or PR will be
released when the counter reaches zero. If the operands are
in neither VRs nor PRs, the instruction can get them from
the stack, as the same as the JVM does.

Once the instruction has produced the result, it will
broadcast the result to the RSs where the corresponding
functional units are waiting the result. If the reference
counter for the VR is not equal to zero, a PR should be
allocated and the result should be stored onto the PR, or the
result should be pushed onto the stack, based on whether the
instruction will leave the instruction scheduling window.

Fig. 3 shows the basic block diagram of the JAViR. It
is very similar to PicoJava, but it differs primarily in the
following new units:

Instruction Fetch and Branch Prediction Unit(IFBPU).
It provides a continuous instruction stream for the subse-
quent related units. When it encounters a branch instruc-
tion whose branch target address can be determined (such
as unconditional branch, method invocation and return), it
can transfer to the correct branch target timely to continue
fetching instructions; if it encounters a conditional branch,
it predicts the branch target by using Branch Target Buffer
[6], fetches instructions from the predicted target, and in-
forms the instruction scheduling unit to execute them specu-
latively. If the branch is mispredicted, it informs the instruc-
tion scheduling unit to cancel the speculatively executed re-
sults, and fetches instructions from the correct branch tar-
get.

Virtual Register Management Unit(VRMU): It receives

Instruction
Cache

Data Cache
Controller

Integer Units Floating Point Units

Data
Cache

Operand Stack
Cache Unit

Virtual Register
Management Unit

(VRMU)

Instruction Fetch
Branch Prediction

Unit (IFBPU)

Physical
Registers

Instruction
Scheduling Unit

(ISU)

Figure 3. Java processor with VRs

instructions from the IFBPU, and analyzes instruction de-
pendences according to the instruction types and their
operand references. It may allocate or release virtual and
physical registers based on the “generation” or “death” of
variable values. Meanwhile, it dispatches the information
of the dependency relationship to the instruction scheduling
unit.

Instruction Scheduling Unit(ISU): It performs instruc-
tion issuing, completion and committing according to the
dependences among instructions.

By analyzing each instruction type and operand refer-
ences, the relationship diagram among the instructions can
be constructed. The VRMU accomplishes this task on the
basis of the relationship diagram analysis. For different
types of instructions, the VRMU adopts the different pro-
cessing approaches. The JVM instructions fall into the fol-
lowing categories:

Arithmetic Instructions: The common feature of this
kind of instructions is that the source operands are popped
from the top of the stack. After operation, the results are
pushed onto the stack.

Stack Management Instructions: These are specially
used in operations such as duplication, removal, and swap
of data in the stack.

Local Variable Instructions: These are used to transfer
values between local variables and the operand stack.

Memory Reference Instructions: These instructions are
used in accessing fields of objects and array elements which
are located in memory. They load fields or the array ele-
ments and push them onto the stack, or store the values in
the top of the stack to memory locations.

83



Branch Instructions: There are two kinds of branch in-
structions: unconditional branch instructions and condi-
tional branch instructions.

Method Invocation Instructions and Return Instructions:
They are used in method invocations and returns from
method.

Others: The other instructions include monitor instruc-
tions and exception handling instructions, these can be con-
sidered as special kinds of branch instructions.

Among the instructions mentioned above, the uncondi-
tional branch instructions and the method invocation and re-
turn instructions are processed inside the IFBPU; they will
not be sent to the VRMU. We’ll discuss how the VRMU
handles the other type of instructions.

In order to analyze the dependences among these in-
structions according to the situation of accessing operands
for each instruction, the VRMU needs anoperands track-
ing stack(OTS) to record the information about the source
operands are produced by which instructions and where
they are located currently.

For arithmetic, memory reference, and conditional
branch instructions, according to their source operands and
information in the OTS, we can know how to find out which
instructions they depend on. These kind of instructions can
get their source operands from the virtual/physical registers
instead of that from the operand stack because the depen-
dent instructions may write their results into the virtual reg-
isters (reservation stations) or physical registers.

With regards to the local variable instructions and stack
instructions, what they operate are to move, copy, pop, and
swap the data of the operand stack. Therefore, these instruc-
tions need not enter to the ISU; the only actions for them are
to update the contents of the OTS, to increase/decrease ref-
erence counters, and to allocate or release virtual/physical
registers.

Notice that it is not necessary for the OTS to record the
dependency information for all the locations in the operand
stack. Because the dependences only refer to those instruc-
tions which are staying in the instruction scheduling win-
dow; it is not necessary to indicate the dependency of an in-
struction with the others which already committed from the
instruction scheduling unit. When an instruction quits from
the instruction scheduling unit, those items in the OTS re-
lated to this instruction will be deleted. The size of the OTS
is proportional to the size of instruction scheduling window.

For the purpose of exploring ILP and eliminating the bot-
tleneck caused by the operations on the top of the stack, in
our JAViR, the local variables and temporary variables are
not stored in the stack, instead, they are stored in the vir-
tual/physical registers which can be allocated and released
dynamically.

Each virtual register is identified by a VR number. It
is different from the physical register, the VR number does

not represent a storage location, it only indicates a speci-
fied data (functional units are provided with reservation sta-
tions). The dependences among instructions are represented
by the VR number. The meaning of allocating and releas-
ing a virtual register just lies on the allocation and release
for a VR number, it is not related to the physical register.
When an instruction execution is finished while its reference
counter does not reach zero, a physical register is allocated
to save the result.

4. Simulations Results

For the purpose of checking and measuring the schedul-
ing effects of the JAViR with various possible configura-
tions, our simulator focuses on the issues of the usage of
the virtual/physical registers and the performance of effec-
tive instructions per cycle.

We make the following basic assumptions. First, the
data cache is non-blocked, 32KB, 4-way set associate, 32-
byte line size, and 5 cycles for swapping a line with outside
cache/memory in cache miss. Second, the branch predic-
tion buffer employs a full associate table with 512 entries
and two-bit counters for prediction. Third, the JAViR func-
tional units have three kinds of execution pipelines: integer,
branch, and float-point, used for executing integer, condi-
tional branch, and floating point instructions, with the exe-
cution latencies of 1, 1, and 3 cycles respectively, and all are
fully pipelined (the floating point division may need more
cycles for execution, but here we assume the latency for it
is also 3 cycles).

Our simulation studies the effective instruction execution
per cycle and the ratio of the required physical registers to
the virtual registers. We carried out the simulation with dif-
ferent size of instruction scheduling windows (16, 64, and
256 instructions respectively).

Since most of the current benchmark programs are writ-
ten by structured languages, which are not proper for our
simulations, we rewrite/select the following test programs.

simul: This is the background part of our experiment sys-
tem which is used for this simulation work. It was originally
written in C++, we rewrite it in Java for the purpose of test-
ing. In our experiment, we use it to simulate more than 10K
Java bytecode’s execution on the JAViR. The total executed
instructions are around 35.2 million instructions.

javac: The Java compiler in SUN JDK 1.1:
sun.tools.javac.Main. It is a very typical object-oriented
program. We use it to compile the Java.lang.string
source code with optimization option. The total executed
instructions are around 48.9 million instructions.

javacc: A program for generating compiler or interpreter
for Java source program on the basis of semantic formal
description (similar to yacc). It is also a typical object-
oriented program. We use it to process the formal descrip-

84



tion of HTML language. A total of 50 million instructions
was sampled and simulated.

li : A Lisp interpreter. It is the 130.li test program in
SPEC95, written in C language. We rewrite this program
in Java by using object-oriented technique. In our experi-
ment, we use it to run 6-queen problem (test.lsp in 130.li of
SPEC95). The total executed instructions are around 24.5
million instructions.

grep: A text pattern matching program in UNIX system.
It was originally written in C, we rewrite it in Java, but we
don’t employ the object-oriented technique. In our experi-
ment, we use it to search a complex pattern from a text file.
A total of 50 million instructions was sampled and simu-
lated.

linpack: It is a linpack Java version for measuring the
JVM performance. It is not an object-oriented program.
The total executed instructions are around 8.1 million in-
structions.

Table 1 shows the results of measured EIPC (effective
instructions per cycle) and the use of virtual/physical reg-
isters. The EIPC is calculated by dividing the total num-
ber of executed effective instructions by the total number of
clock cycles, where the effective instructions are the instruc-
tions that enter into the instruction scheduling unit (ISU);
the following instructions need not enter to ISU and there-
fore are not included in the effective instructions: uncondi-
tional branch, method invocation and return, stack instruc-
tions and local variable instructions (transmissions between
local variable and the top of the stack). The effective in-
structions occupy about a dynamic portion of 30-50% of all
the instructions.

In Table 1,PR/VRrepresents the ratio of the required
physical registers to the generated virtual register. We al-
locate a virtual register for each effective instruction and
assign a reference counter for it. When the execution of
this instruction is finished but the counter does not reach
zero, we assign the virtual register to a real physical register.
For those instructions whose VR reference counters contain
zero, the physical registers are not necessary to be assigned.
UseVRrepresents the proportion of the virtual register ref-
erence (only those virtual registers having no their corre-
sponding physical registers) to the total reference of the
source operands.AvgPRrepresents the average number of
physical registers which are used simultaneously. And the
MaxPRis the maximal number of physical registers which
are simultaneously required.

As shown in Table 1, the EIPC becomes better as the
scope of instruction scheduling increases. Butli andgrep
have lower performance than others. This is because the
low correctness of branch prediction for these two programs
(72% and 74% respectively). If we adopt the loop un-
rolling [5] statically and/or the two-level prediction mecha-
nism [7] dynamically, the performances are expected better

Test Programs
SR Items simu javac javacc li grep linpack

EIPC 3.27 3.31 3.44 2.83 2.82 2.11
PR/VR 20% 46% 46% 53% 51% 45%

16 UseVR 62% 60% 57% 67% 50% 45%
AvgPR 1.32 2.69 2.07 1.55 1.11 4.05
MaxPR 10 11 10 10 9 8

EIPC 5.12 4.09 4.60 3.23 2.91 5.44
PR/VR 16% 36% 39% 49% 48% 8%

64 UseVR 73% 70% 70% 74% 52% 60%
AvgPR 2.24 4.85 3.26 1.55 1.11 4.05
MaxPR 16 39 34 10 19 17

EIPC 5.49 4.21 4.78 3.23 2.91 6.86
PR/VR 16% 33% 39% 49% 48% 4%

256 UseVR 76% 76% 72% 74% 52% 63%
AvgPR 3.11 7.44 4.17 1.86 1.11 8.69
MaxPR 51 100 77 71 38 43

SR: Scheduling range (instructions)

Table 1. EIPC results and VRs/PRs usages

(we haven’t done yet such simulations). Consider together
with that the effective instructions occupy about a dynamic
ratio of 30-50% of all the instructions, the IPC including the
total instructions will be two or three times compared with
the EIPC. This IPC can be regarded roughly as the speedup
comparing with a stack based Java processor.

More than 50% virtual registers don’t need its corre-
sponding physical registers, and the UseVR also has high
percentage. This means that most operand references need
not be stored in the stack, nor in the physical registers. The
number of the simultaneously required physical registers
becomes larger as the size of instruction scheduling window
increases. But it is less than the size of instruction schedul-
ing window. In a real implementation, we can fix the num-
ber of physical registers. For the executions of various pro-
grams, when the physical registers are not enough, we can
use the traditional operand stack cache, or the data cache by
means of saving/restoring operations in background.

In addition, we evaluate the benefits of the memory ref-
erence features of Java Virtual Machine. We compare the
JAViR performance by using the following three methods
for the memory reference dependency detection.

RISC method: the memory reference dependences are
detected only after the physical addresses are calculated.
It is equivalent to the memory references in the conven-
tional RISC architectures, where most memory instructions
require calculations for their effective addresses.

JVM method: the memory reference dependences are de-
tected by the method described in this paper.

Ideal method: the memory reference dependences can be
detected in advance in any situation. This is just used as a
reference base for performance comparison.

Table 2 lists the EIPC simulation results by using the

85



different methods for the memory reference dependency de-
tection. JVM method offers slighter improvement compar-
ing with the traditional RISC method, but in the RISC ar-
chitecture, for implementing the dynamic scheduling of the
memory instructions, it requires much more complex hard-
ware than that of JVM method. The results show that the
JAViR could achieve the performance of average 2.89 and
4.01 EIPC when the sizes of instruction scheduling window
are 16 and 64 respectively. Further increasing the window
size to 256 get few performance improvement (4.20 EIPC
on average).

Test Programs
SR Items simu javac javacc li grep linpack

RISC 3.25 3.30 3.43 2.83 2.82 2.11
16 JVM 3.27 3.31 3.44 2.84 2.82 2.11

Ideal 3.27 3.31 3.44 2.86 2.82 2.11

RISC 5.03 4.05 4.52 3.21 2.90 5.44
64 JVM 5.12 4.09 4.60 3.23 2.90 5.44

Ideal 5.14 4.10 4.61 3.25 2.90 5.44

RISC 5.33 4.12 4.66 3.21 2.90 6.86
256 JVM 5.49 4.21 4.78 3.23 2.91 6.86

Ideal 5.51 4.22 4.79 3.25 2.91 6.86

SR: Scheduling range (instructions)

Table 2. EIPC results with different detections

5. Conclusion Remarks

Generally, it is difficult for a stack based machine to ex-
ploit instruction level parallelism due to the frequent ac-
cesses to the top of the stack. But the Java Virtual Machine
Specification brings part semantics of high-level language
into architecture level. By using this feature, we introduced
a new Java processor architecture, JAViR, with a new kind
of storage, named virtual register, to make the ILP exploita-
tion more effective.

To delay the merging procedure between the instruction
set and the hardware resources into execution stage can re-
duce the false dependences owing to the earlier merger, and
can reduce the complexity of hardware for detecting the
dependences so that processor can more effectively exploit
the ILP, and consequently improve the performance. Mean-
while it also provides the flexibility of processor design.

In the JAViR design, the most complicated part of hard-
ware implementation is the Virtual Register Management
Unit (VRMU). The complexity can be expressed byO(n2),
wheren is the number of instructions that the VRMU can
process simultaneously.

The virtual and physical registers are transparent to pro-
grammers and compilers. It means that the Java bytecode’s
compatibility can be kept. At runtime, the Java bytecode is

transformed to the operations on virtual/physical registers.
Because the life-time of variables in Java bytecode is quite
short, most operation results need not be stored; they are
forwarded to the instructions, i.e., the only place where the
results are required.

Various simulations are performed in order to predict the
performance improvement compared to the traditional stack
based processor architecture which does not deal with the
issue of exploiting the ILP. Our results show that the new
processor with a 16-instruction scheduling window could
achieve the performance of average 2.89 EIPC or 4.01 EIPC
with a 64-instruction window.

The proposed JAViR in this paper is only one of the pos-
sible processor architectures that can exploit Java bytecode
ILP with the combination of the semantics of high-level
language, instruction set, and processor architecture. We
believe that many favorite high-performance Java proces-
sor architectures will be investigated in order to satisfy the
increased performance requirements for the rapid develop-
ment of network computing.

References

[1] J. Gosling, B. Joy, and G. Steele, “The Java
Language Specification”, Addison-Wesley, see also
http://www.javasoft.com/docs/books/jls/index.html.

[2] T. Lindholm and F. Yellin, “The Java Virtual Ma-
chine Specification”, Addison-Wesley, 1997, also see
http://www.javasoft.com/docs/books/vmspec/index.html

[3] Sun’s WhitePaper, “PicoJava I Microprocessor Core
Architecture”, http://www.sun.com/microelectronics/
whitepapers/wpr-0014-01/

[4] Jim Turley, “MicroJava Pushes Bytecode Performance
– Sun’s MicroJava 701 Based on New Generation of
PicoJava Core”,Microprocessor Report, November
17, 1997. pp9-12.

[5] J. Hennessy and D. Patterson,Computer Architecture,
A Quantitative Approach, Second Edition, Morgan
Kaufmann Publishers, Inc., 1996.

[6] J. Lee and A. J. Smith, “Branch Prediction Strategies
and Branch Target Buffer Design”,IEEE Computer,
January 1984, pp6-22.

[7] T. Y. Yeh and Y. N. Patt, “Alternative Implementa-
tions of Two-level Adaptive Branch Prediction”,Proc.
19th Intl. Sym. on Computer Architecture, May 1992.
pp124-134.

[8] H. Liao and S. Li, “Virtual Register Structure”,Chi-
nese Journal of Computers, Vol.19, No. 11, Nov.
1996. pp801-809.

86


