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Abstract—In this paper, we propose efficient routing al-
gorithms for collective communication in a newly proposed,
versatile network, called a recursive dual-net (RDN). The
RDN can be used as a candidate for the interconnection of
supercomputers of the next generation. The RDN is generated
by recursively applying dual-construction on a base network.
Given a regular and symmetric graph of size n and node-degree
d, the dual-construction generates a regular and symmetric
graph of size 2n2 and node-degree d+1. The RDN has many
interesting properties including small node-degree and short
diameter. Our results show that collective communication can
be done efficiently in RDN.

Key words: Interconnection networks, collective communi-
cation, routing algorithms

I. INTRODUCTION

In massively parallel processor (MPP), the interconnec-
tion network plays a crucial role in the issues such as
communication performance, hardware cost, computational
complexity, fault-tolerance. Much research has been reported
in the literature for interconnection networks that can be
used to connect parallel computers of large scale (see [1],
[2], [3] for the review of the early work). The following two
categories have attracted a great research attention. One is
the networks of hypercube-like family that has the advantage
of short diameters for high-performance computing and
efficient communication [4], [5], [6], [7], [8]. The other is
2D/3D meshes or tori that has the advantage of small and
fixed node-degrees and easy implementations. Traditionally,
the MPP in the history including those built by NASA,
CRAY, FGPS, IBM, use a 2D/3D mesh or a torus or their
variations with extra diagonal links. Recursive networks also
have been proposed as effective interconnection networks
for parallel computers of large scale. For example, the WK-
recursive network [9], [10] is a class of recursive scalable
networks. It offers a high-degree of regularity, scalability,
and symmetry and has a compact VLSI implementation.

Recently, due to advances in computer technology, and
competition among computer makers, computers containing
hundreds of thousands of nodes have been built [11]. It was

predicted that the MPPs of the next decade will contain
10 to 100 millions of nodes [12]. For such a parallel
computer of very-large scale, the traditional interconnection
networks may no longer satisfy the requirements for the
high-performance computing or efficient communication.
For the future generation of MPPs with millions of nodes,
the node-degree and the diameter will be the critical mea-
sures for the effectiveness of the interconnection networks.
The node-degree is limited by the hardware technologies
and the diameter affects all kind of communication schemes
directly. Other important measures include bisection band-
width, scalability, and efficient routing algorithms.

In this paper, we first describe a set of networks, called
Recursive Dual-Net (RDN). The RDN is based on recursive
dual-construction of a base network. The dual-construction
extends a regular network with n nodes and node-degree d
to a regular network with 2n2 nodes and node-degree d+1.
The RDN is especially suitable for the interconnection of
parallel computers with millions of nodes. It can connect
a huge number of nodes with just a small number of links
per node and very short diameters. For example, a 2-level
RDN with 5-ary, 2-cube as the base network can connect
more than 3-million nodes with only 6 links per node and
its diameter equals to 22. The RDN extends the idea of the
second level interconnection network of IBM Roadrunner in
which every cluster is connected to every switch [13].

The major contributions of this paper are the efficient rout-
ing algorithms for collective communication including one-
to-all broadcast, all-to-all broadcast, one-to-all personalized
communication, and all-to-all personalized communication.
The proposed algorithms are analyzed carefully under 1-
port, package switching communication model. Then, the
results are compared with hypercube networks.

The rest of this paper is organized as follows. Section
2 describes the recursive dual-net in details. Section 3 de-
scribes the communication model used in this paper. Section
4 describes the routing algorithms for one-to-all broadcast
and personalized communication. Sections 5 describes the
routing algorithms for all-to-all broadcast and personalized
communication. Section 6 compares the time complexities of



the proposed algorithms and those of hypercube. 7 concludes
the paper and presents some future research directions.

II. RECURSIVE DUAL-NET

Let G be an undirected graph. The size of G, denoted
as |G|, is the number of vertices. A path from node s to
node t in G is denoted by s → t. The length of the path
is the number of edges in the path. For any two nodes s
and t in G, we denote L(s, t) as the length of a shortest
path connecting s and t. The diameter of G is defined as
D(G) = max{L(s, t)|s, t ∈ G}. For any two nodes s and t
in G, if there is a path connecting s and t, we say G is a
connected graph.

Suppose we have a regular graph B and there are n0

nodes in B and the node-degree is d0. A k-level Recursive
Dual-Net RDNk(B), also denoted as RDNk(B(n0)), can
be recursively defined as follows:

1) RDN0(B) = B is a regular graph with n0 nodes,
called base network;

2) For k > 0, RDNk(B) is constructed from
RDNk−1(B) by a dual-construction as explained
below (also see Figure 1).

RDNk−1(B) RDNk(B)

type
0

type
1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Figure 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as a
cluster of level k and nk−1 = |RDNk−1(B)| for k > 0. An
RDNk(B) is a graph that contains 2nk−1 clusters of level
k as subgraphs. These clusters are divided into two sets with
each set containing nk−1 clusters. Each cluster in one set is
said to be of type 0, denoted as C0

i , where 0 ≤ i ≤ nk−1−1
is the cluster ID. Each cluster in the other set is of type 1,
denoted as C1

j , where 0 ≤ j ≤ nk−1−1 is the cluster ID. At
level k, each node in a cluster has a new link to a node in a
distinct cluster of the other type. We call this link cross-edge
of level k. By following this rule, for each pair of clusters
C0
i and C1

j , there is a unique edge connecting a node in C0
i

and a node in C1
j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there

are nk−1 nodes within each cluster RDNk−1(B).

We can see from the recursive dual-construction described
above that an RDNk(B) is a symmetric regular network
with node-degree d0 + k if the base network is a symmetric
regular network with node-degree d0. The following theorem
is from [14].

Theorem 1: Assume that the base network B is a sym-
metric graph with size n0, node-degree d0, and the diameter
D0. Then, the size, the node-degree, the diameter and the
bisection bandwidth of RDNk(B) are (2n0)2k/2, d0 + k,
2kD0 + 2k+1 − 2, and d(2n0)2k/8e, respectively.

The cost ratio CR(G) for measuring the combined effects
of the hardware cost and the software efficiency of an
interconnection network was also proposed in [14]. Let
|(G)|, d(G), and D(G) be the number of nodes, the node-
degree, and the diameter of G, respectively. We define
CR(G) as

CR(G) = (d(G) +D(G))/ lg |(G)|

The cost ratio of an n-cube is 2 regardless of its size.
The CR for some RDNk(B) is shown in Table I. Two
small networks including 3-ary 3-cube and 5-ary 2-cube are
selected as practical base networks. For INs of size around
1K, we set k = 1, while for INs of size larger 1M, we set
k = 2. The results show that the cost ratios of RDNk(B)
are better than hypercube and 3D-tori in all cases.

Table I
CR FOR SOME RDNk(B)

Network n d D CR

10-cube 1,024 10 10 2.00
RDN1(B(25)) 1,250 5 10 1.46
RDN1(B(27)) 1,458 7 8 1.43

3D-Tori(10) 1,000 6 15 2.11

22-cube 4,194,304 22 22 2.00
RDN2(B(25)) 3,125,000 6 22 1.30
RDN2(B(27)) 4,251,528 8 18 1.18

3D-Tori(160) 4,096,000 6 240 11.20

A presentation for RDNk(B) that provides an unique
ID to each node in RDNk(B) is described as follows. Let
the IDs of nodes in B, denoted as ID0, be i, 0 ≤ i ≤
n0 − 1. The IDk of node u in RDNk(B) for k > 0 is a
triple (u0, u1, u2), where u0 is a 0 or 1, u1 and u2 belong
to IDk−1. We call u0, u1, and u2 typeID, clusterID, and
nodeID of u, respectively.

More specifically, IDi, 1 ≤ i ≤ k, can be defined
recursively as follows: IDi = (b, IDi−1, IDi−1), where
b = 0 or 1. The ID of a node u in RDNk(B) can also be
presented by an unique integer i, 0 ≤ i ≤ (2n0)2k/2 − 1,
where i is the lexicographical order of the triple (u0, u1, u2).
For example, the ID of node (1, 1, 2) in RDN1(B) is
1 ∗ 32 + 1 ∗ 3 + 2 = 14. With this ID presentation, (u, v) is



a cross-edge of level k in RDNk(B) iff u0 6= v0, u1 = v2,
and u2 = v1. The following theorem is from [14].

Theorem 2: In RDNk(B), routing from source s to
destination t can be done in at most 2k ∗ D0 + 2k+1 − 2
steps, where D0 is the diameter of the base network.

III. MODEL OF COMMUNICATIONS

Design of efficient routing algorithms for collective com-
munications is the key issue in message-passing parallel
computers or networks [15] [16] [17] [18] [19]. Collec-
tive communications are required in load balancing, event
synchronization, and data exchange. Based on the number
of sending and receiving processors, these communications
can be classified into one-to-many, one-to-all, many-to-many
and all-to-all. The nature of the messages to be sent can be
classified as personalized or non-personalized (multicast or
broadcast). The all-to-all personalized communication (total
exchange) is at the heart of numerical applications. In this
paper, we will present efficient algorithms for collective
communications in recursive dual-net.

An important metric used to evaluate efficiency of com-
munication is transmission latency, or communication time.
The communication time depends on many factors such as
contentions, switching techniques, network topologies etc.
Therefore, we first define the communication model used in
this paper.

We assume that the communication links are bidirectional,
that is, two directly-connected processors can send messages
to each other simultaneously. We also assume the processor-
bounded model (one-port model) in which each node can
access the network through a single input port and a single
output port at a time. The port model of a network system
refers to the number of internal channels at each node. In
order to reduce the complexity of communication hardware,
many systems support one-port communication architecture.
We also assume the linear cost model [20] in which the
transfer time for a message is linearly proportional to the
length of the message.

There are many switching methods. In this paper, we
assume the packet switching model [21], [22]. In this model,
each packet is maintained as an entity that is passed from
node to node as it moves through the network. The long
message can be partitioned and transmitted as fixed-length
word w. The first few bytes of a packet contains routing
and control information and are referred as packet header.
A packet is completely buffered at each intermediate node
before it is forwarded to the next node (for this reason,
the model is also called store-and-forward switching). In
this paper, we allow packages that are headed for the same
destination to be combined into a single message. The time
to pack and unpack messages is included in the startup
latency. The packet switching model is suitable for collective
communication in MPP since it is safer than other switching
models such as virtual cut-through switching. With packet

switching model, the communication time for a message of
length m (number of fixed-length words) to be sent to a node
of distance d is d(ts + mtw), where ts is startup latency,
the time required for the system to handle the message at
the sending node, tw is the per-word transfer time (1/tw is
the bandwidth of the communication links). Through this
paper, we will use the formula above for estimating the
communication times of the proposed algorithms.

IV. ONE-TO-ALL BROADCAST AND PERSONALIZED
COMMUNICATION

In this section, we discuss one-to-all broadcast and one-
to-all personalized communication.

Parallel algorithms often require a single processor to send
identical data to all other processors or to a subset of them.
This operation is known as one-to-all broadcast or one-to-
many multicast. In our communication model, a message is
not routed in parts along separate paths and communication
is allowed on only one link of each processor at a time. It can
be shown that one-to-all broadcast cannot be performed in
less than (log p)(ts +mtw) time on any architecture, where
p is the number of processors [22].

We show an algorithm which performs one-to-all broad-
cast in RDN efficiently. The algorithm for broadcast from
source node s works as follows. The source s first sends
the message to it neighbor s′ along the cross-edge of level
k. Then, s and s′ broadcast simultaneously the message
to all other nodes in Cs and Cs′ recursively. Next, every
node u ∈ Cs \ {s} and every node u′ ∈ Cs′ \ {s′} send
the message to neighbors v and v′ along the cross-edge
of level k, respectively. Finally, every v and v′ broadcast
the message to all other nodes in Cv and Cv′ , respectively.
The algorithm is formally shown in Algorithm 1. All nodes
execute it concurrently.

Algorithm 1: One To All Bcast(RDNk(B),my id, s,msg)
begin

if k = 0 One To All Bcast(B,my id, s,msg)
else
partner ← the neighbor of my id via the cross-edge
of level k;
if my id = s send msg to partner;
if (my id = s) OR (partner = s)
source← my node id;
One To All Bcast(RDNk−1

my id(B), ∗, source,msg);
if (my cluster id = s1) AND (my node id 6= s2)

/* s = (s0, s1, s2) */
send msg to partner;

if getmessage = true
source← my node id;
One To All Bcast(RDNk−1

my id(B), ∗, source,msg);
end



The time complexity for the one-to-all broadcasting
Toab(k,m), k > 0, can be calculated from the following
recurrence:

Toab(k,m) = 2(ts +mtw) + 2Toab(k − 1,m).

Assume that Toab(0,m) is given. Then, we can obtain
the solution of the recurrence as follows.

Toab(k,m) = (2 + 22 + . . . + 2k)(ts + mtw) +
2kToab(0,m) = (2k+1 − 2)(ts +mtw) + 2kToab(0,m).

Theorem 3: Assume that the time complexity Toab(0,m)
for one-to-all broadcasting in the base network B is known,
where m is the length of the message. The time complexity
Toab(k,m) for one-to-all broadcasting in RDNk(B), k > 0,
is (2k+1 − 2)(ts +mtw) + 2kToab(0,m).

In one-to-all personalized communication, a single node
sends a unique message of size m to every other node. Since
the source node transmits m words for each of the other
p − 1 nodes, the lower bound to the communication time
of one-to-all personalized communication is (p − 1)mtw.
This lower bound is independent of the architecture or
routing scheme. The routing algorithm for the one-to-all
personalized communication in RDN is similar to the one-to-
all broadcast algorithm described above. However, in order
to achieve a better performance on the communication time,
we pack and unpack the messages in a proper way.

Initially, the source node s contains all the messages. First,
s packs the messages for the nodes in the other level-k
clusters of the same type as s into a single message msg1,
packs the messages for the level-k clusters of the other type
except C(s′) (s′ = s(k+m)) into a single message msg2
and sends msg1 to s′ along the cross-edge of s. Second,
s and s′ simultaneously unpack properly messages msg2
and msg1 and send each corresponding parts to all other
nodes in C(s) and C(s′), respectively. This stage is done
recursively. At the end of this stage, each u ∈ C(s) and
each u′ ∈ C(s′) \ {s′} hold the packed messages of size
|Ck|m (say, msgCv and msgCv′) for the nodes in level-k
clusters C(v) and C(v′), respectively, where v = u(k+m)

and v′ = (u′)(k+m). Node s holds packed messages msgCs
and msgCs′ . Third, u and u′ send msgCv and msgCv′ to
v and v′ (node s sends msgCs′ to s′) along cross-edges of
u and u′, respectively. At the end of this stage, every cluster
has one node, say src for simplicity, which holds message
msgCsrc. Finally, node src sends the message msgCsrc
to all other nodes in C(src) recursively. The algorithm is
formally described in Algorithm 2.

The time complexity for the one-to-all personalized com-
munication Toap is calculated as follows. Assume that the
time for pack/unpack process is included in ts. Then we
have

Algorithm 2: One To All Pers(RDNk(B),my id, s,msg)
begin

if k = 0 One To All Pers(B, ,my id, s,Mmy id)
else
divide msg into two parts, msg1 and msg2, where msg1
contains all messages to be sent to the nodes in the
clusters of type s0, and msg2 contains the rest messages;
pack all messages in msg1 and msg2 that are to be
sent to the nodes in the cluster Cq with cluster ID = q
into a single message msgq to be sent to the node with
node ID = q in the clusters with cluster ID = s1;
partner ← the neighbor of my id via the cross-edge of
level k;
if my id = s

send msg1− {msgCs} to partner;
temp← msg2 \ {msgCs′}
One To All Pers(RDNk−1

s (B), ∗, s2, temp);
if partner = s

get msg1− {msgCs} from partner;
temp← msg1 \ {msgCs}
One To All Pers(RDNk−1

my id(B), ∗, s2, temp);
if (my cluster id = s1) AND (my id 6= s′)

send msgCmy node id to partner;
if getmessage = true

get temp from partner;
source← my node id;

if my id = s
temp← msgCs;
source← my node id;
One To All Pers(RDNk−1

my id(B), ∗, source, temp);
endif

end

Toap(k,m) = (ts + (nk/2 − nk−1)mtw) + Toap(k −
1, nk−1m) + (ts + nk−1mtw) + Toap(k − 1,m).

Assume that Toap(0,m) is given and k > 0. Then, we
can obtain an approximate solution of the recurrence as
follows.

Toap(k,m) ≈ (2 + 22 + . . . + 2k)ts + (nk/2 +
nk/22 + . . .)mtw + Toap(0, nk−1nk−2 . . . n0m) +
Toap(0, nk−1nk−2 . . . n1m) + (2k − 2)Toap(0,m) ≈
(2k+1−2)ts+nkmtw +Toap(0, rm)+Toap(0, (r/n0)m)+
(2k − 2)Toap(0,m),
where r = nk/(2kn0) = (2n0)2k−1/2k.

Theorem 4: Assume that the time complexity Toap(0,m)
for one-to-all personalized communication in the base net-
work B is known, where m is the length of each message.
The time complexity Toap(k,m) for one-to-all personalized
communication in RDNk(B), k > 0, is approximately



(2k+1−2)ts+nkmtw +Toap(0, rm)+Toap(0, (r/n0)m)+
(2k−2)Toap(0,m), where r = nk/(2kn0) = (2n0)2k−1/2k.

V. ALL-TO-ALL BROADCAST AND PERSONALIZED
COMMUNICATION

All-to-all broadcast is a generalization of one-to-all broad-
cast in which all nodes simultaneously initiate a broadcast.
A node broadcasts the same m-word message to every other
node, but different nodes may broadcast different messages.
The communication pattern of all-to-all broadcast can be
used to perform some other operations, such as reduction
and prefix sums.

The lower bound to the communication time of all-to-
all broadcast for parallel computers on which a node can
communicate on only one of its ports at a time is (p−1)mtw,
where p is the number of nodes. This is because each node
receives at least (p − 1)m words of data, regardless of the
architecture or routing scheme.

An efficient way to perform all-to-all broadcast is to
perform all p one-to-all broadcasts simultaneously so that
all messages traversing the same path at the same time are
concatenated into a single message whose size is the sum
of the sizes of individual messages.

The algorithm for all-to-all broadcast in RDN can be
described in three stages. In the first stage, the broadcast
is done within each level-k cluster. This procedure is done
recursively. In the second stage, each node of a level-k
cluster sends the identical message to a node in a level-k
cluster of the other type along the level-k cross-edge, and
then, the received message is broadcasted within the cluster.
After this stage, every node receives messages from all other
nodes in the same clusters and in the clusters of the other
type. In the last stage, every node gets a single concatenated
message, including the messages from the nodes in other
level-k clusters of the same type, along the level-k cross-
edge.

The algorithm is showed in Algorithm 3. All nodes
execute the algorithm concurrently. In Algorithm 3, my id
is the id of the node. The initial message to be broadcasted
is Mmy id at each node. At the end of the procedure, each
node stores the collection of all p messages in result. At
each stage, the algorithm first assigns partner and then,
performs data exchange by sending and receiving message
to and from the partner. The partner for data exchange is
one of its neighbors through the cross-edge of level k.

The time for the all-to-all broadcast Taab is calculated as
follows.

Taab(k,m) = Taab(k − 1,m) + (ts + nk−1mtw) +
Taab(k − 1, nk−1m) + (ts + (n2

k−1)mtw)

We can see from the above formula that the time com-
plexities for the all-to-all broadcasting and the one-to-all

Algorithm 3: All To All Bcast(RDNk(B),Mmy id)
begin

if k = 0 result← All To All Bcast(B,Mmy id)
else
M ′my id ← All To All Bcast(RDNk−1(B),Mmy id);
partner ← the neighbor via cross-edge of level k;
send message M ′my id to partner;
Tmy id ←M ′partner;
T ′my id ← All To All Bcast(RDNk−1(B), Tmy id);
send message T ′my id to partner;
result← T ′my id ∪ T ′partner;

endif
end

personalized communication are approximately the same.
Theorem 5: Assume that the time complexity Taab(0,m)

for all-to-all broadcasting in the base network B is
known, where m is the length of each message. The
time complexity Taab(k,m) for all-to-all broadcasting in
RDNk(B), k > 0, is approximately (2k+1−2)ts+nkmtw+
Taab(0, rm)+Taab(0, (r/n0)m)+(2k−2)Taab(0,m), where
r = nk/(2kn0) = (2n0)2k−1/2k..

In all-to-all personalized communication, each node sends
a distinct message of size m to every other node. The total
number of messages is p(p− 1).

The algorithm for all-to-all personalized communication
in RDN can be described in three stages. In the first
stage, We first divide Mmy id into two parts, M1my id and
M2my id, where M1my id contains all messages to be sent
to the nodes in the clusters of my type, and M2my id
contains the rest message. Then, the first part of personalized
messages M1 is exchanged between my id and partner,
the neighbor via cross-edge of level k. In the second stage,
we first pack all messages that are to be sent to the nodes
in the cluster of level k with clusterID = q into a single
message msgq . Then, we perform all-to-all personalized
communication inside each cluster, where msgq is to be sent
to node with nodeID = q. Notice that |msgq| = 2nk−1m. In
the last stage, each node packs the received messages into a
single message of length nkm and sends the packed message
to its neighbor along the cross-edge of level k. After receive
the message, each node unpacks the message received from
its neighbor into nk−1 messages, msgq′ , where msgq′ is the
collection of all messages destinated to node with nodeID =
q′ in the cluster. Finally, we perform all-to-all personalized
communication again within each cluster of level k. This can
be done since the packed messages sent through the level-k
cross-edge are all destinated to the nodes inside the cluster.

The algorithm is showed in Algorithm 4. All nodes
execute the algorithm concurrently. In Algorithm 4, my id
is the id of the node. The initial message to be sent is



Mmy id which contains p − 1 messages of length m. At
the end of the algorithm, each node stores the collection of
all p messages in result.

Algorithm 4: All To All Pers(RDNk(B),Mmy id)
begin

if k = 0 result← All To All Pers(B,Mmy id)
else

divide Mmy id into two parts, M1my id and M2my id,
where M1my id contains all messages to be sent to
the nodes in the clusters of type my type, and
M2my id contains the rest messages;
partner ← the neighbor via cross-edge of level k;
send message M1my id to partner;
M ′my id ←M2my id ∪M1partner;
pack all messages in M ′my id that are to be sent to the
nodes in the cluster of level k with cluster ID = q into
a single message msgq to be sent to the node with
node ID = q;
Tmy id ← All To All Pers(RDNk−1(B),M ′my id);
send message Tmy id to partner;
T ′my id ← Tpartner;
unpack T ′my id into nk−1 messages, msgq′ , such that
msgq′ is the collection of messages destinated to
the node with node ID = q′;
result← All To All Pers(RDNk−1(B), T ′my id);

endif
end

The time to complete the all-to-all personalized
communication Taap is as follows.

Taap(k,m) = (ts + (nk/2 − 1)mtw) + Taap(k −
1, 2nk−1m)+(ts+(nk−1)mtw)+Taap(k−1, 2nk−1m) ≈
2ts + 3nk/2mtw + 2Taap(k − 1, 2nk−1m).

Assume that Taap(0,m) is given and k > 0. Then, we
can obtain an approximate solution of the recurrence as
follows.

Taap(k,m) ≈ (2ts + (3/2)nkmtw) + 2Taap(k −
1, 2nk−1m) ≈ (2k+1 − 2)ts + (3/2)(nk + 2nk +
22nk + . . .)mtw + 2kTaap(0, 2knk−1nk−2 . . . n0m) ≈
(2k+1 − 2)ts + (3 ∗ 2k ∗ nk)mtw + 2kTaap(0, (nk/n0)m),
where nk = (2n0)2k/2.

Theorem 6: Assume that the time complexity Taap(0,m)
for all-to-all personalized communication in the base net-
work B is known, where m is the length of each message.
The time complexity Taap(k,m) for all-to-all personalized
communication in RDNk(B), k > 0, is approximately
(2k+1 − 2)ts + (3 ∗ 2k ∗ nk)mtw + 2kTaap(0, (nk/n0)m).

VI. RECURSIVE DUAL-NET V.S. HYPERCUBE

In this section, will compare the performance of the
proposed collective communication algorithms with that of
hypercube. For simplicity, we assume that the base network
is a 3-cube. Then, the sizes of RDN1(B) and RDN2(B)
are 27 = 128 and 215 = 32, 768, respectively. The time com-
plexities of the algorithms for collective communications on
hypercubes are listed below [22].
Tcubeoab = (lg p)(ts +mtw)
Tcubeoap = (lg p)ts + (p− 1)mtw
Tcubeaab = (lg p)ts + (p− 1)mtw
Tcubeaap = (lg p)(ts + (p/2)mtw)

For the base network, a 3-cube,
T3cubeoab = 3ts + 3mtw
T3cubeoap = 3ts + 7mtw
T3cubeaab = 3ts + 7mtw
T3cubeaap = 3ts + 12mtw

If p = 128, for 7-cube,
T7cubeoab = 7ts + 7mtw
T7cubeoap = 7ts + 127mtw
T7cubeaab = 7ts + 127mtw
T7cubeaap = 7ts + 448mtw

Now consider RDN1(B) where B is a 3-cube. The total
number of nodes is 128.

For the one-to-all broadcast, there are 4 steps as shown
as in Figure 2. First, the source node s sends the message
via cross-edge to the nodes s′ of the other type. This takes
ts +mtw. Then s and s′ broadcast the message inside their
own clusters (3-cubes). This takes 3ts + 3mtw. Next, the
nodes in the clusters of s and s′ send the message via cross-
edge. This takes ts +mtw. Finally, the nodes broadcast the
message inside their own clusters. This takes 3ts + 3mtw.
The total time the one-to-all broadcast takes is 8ts + 8mtw.

For the one-to-all personalized communication, there are
also 4 steps. Suppose node 0 contains 128 messages, each for
node i, 0 ≤ i ≤ 127. First, the source node s packs messages
for the nodes in the other clusters of the same type with s
into a single message of length (64−8)m in words and sends
it to s′ via cross-edge. It takes ts + (64− 8)mtw. Then the
nodes s and s′ do the one-to-all personalized communication
inside their own clusters. It takes 3ts+(32+16+8)mtw. The
nodes in the clusters of s and s′ send a message of length
8 via cross-edge. It takes ts + 8mtw. Finally, the nodes do
the one-to-all personalized communication inside their own
clusters. It takes 3ts+(4+2+1)mtw. The total time the one-
to-all personalized communication takes is 8ts + 127mtw.

For the all-to-all broadcast, there are also 4 steps. First,
each node broadcasts its message inside cluster. In this step,
three data transmissions take place and the size of the mes-
sage doubles after each transmission: (1) sending 1 message
via dimension 2, (2) sending 2 messages via dimension 1,
and (3) sending 4 messages via dimension 0. The sub-total



(a) Node 0 sends a message via cross edge

(b) Broadcast inside clusters

(c) Send the message via cross edge

(d) Broadcast inside clusters

0

Figure 2. One-to-all broadcast in RDN1(B)

time it takes is 3ts+(1+2+3)mtw = 3ts+7mtw. Then each
node sends a message of length 8 via the cross-edge. This
takes ts + 8mtw. Next, each node broadcasts its message
received inside cluster. In this step, three data transmissions
take place and the size of the message doubles after each
transmission: (1) sending 8 messages via dimension 2, (2)
sending 16 messages via dimension 1, and (3) sending 32
messages via dimension 0. The sub-total time it takes is
3ts + (8 + 16 + 32)mtw = 3ts + 56mtw. Finally, each node
sends a message of length 63 via the cross-edge. This takes
ts + 63mtw. The total time the one-to-all broadcast takes is
(3ts+7mtw)+(ts+8mtw)+(3ts+56mtw)+(ts+63mtw) =
8ts + 134mtw.

For the all-to-all personalized communication, there are
also 4 steps. First, we do the personalized communication
inside each cluster. A node contains 128 messages, each for
node i, 0 ≤ i ≤ 127. In this step, three data transmissions
take place and the message size is 64. The sub-total time it
takes is 3ts+(64×3)mtw = 3ts+192mtw. Then each node
sends a message of length 64 via the cross-edge. This takes
ts + 64mtw. Next, we do the personalized communication
inside the clusters. In this step, three data transmissions take
place. The sub-total time it takes is 3ts + (64 × 3)mtw =
3ts+192mtw. Finally, each node sends a message of length
64 via the cross-edge. This takes ts+64mtw. The total time
the all-to-all personalized communication takes is (3ts +
192mtw)+(ts+64mtw)+(3ts+192mtw)+(ts+64mtw) =
8ts + 512mtw.

Now we consider an RDN2(B) that connects 215 =
32, 768 nodes where B is a 3-cube.

For the one-to-all broadcast, source node sends the mes-
sage via cross-edge of level 2. It takes ts +mtw. Then the
nodes that have the message broadcast in RDN1(B). This
takes 8ts + 8mtw. Next, the nodes send the message via
cross-edge of level 2. It takes ts +mtw. Finally, the nodes
broadcast the message in RDN1(B). This takes 8ts+8mtw.
The total time the one-to-all broadcast takes is 18ts+18mtw.

For the one-to-all personalized communication, the source
node s send a packed message of length (16384 − 128)m
in words to the node s′ via the cross-edge of level 2.
Then nodes s and s′ do the personalized communications
in RDN1(B). Next, each node send a packed message
of length 128m via cross-edge of level 2. Finally, the
personalized communication is done in RDN1(B). The
total time is 18ts+(32767−128−8+1024+128−8+8)mtw.

For all-to-all broadcast in RDN2(B), we first do the
all-to-all broadcast in RDN1(B). Then each node send a
packed message of length 128m via cross-edge of level 2.
Next, we do the all-to-all broadcast in RDN1(B). Finally,
each node send a packed message of length 16383m via
cross-edge of level 2. The total time is 18ts + (32767 + 8−
1 + 128 + 1024− 1)mtw.

The all-to-all personalized communication is done sim-
ilarly to the all-to-all broadcast. The total time is 18ts +



16384× 18mtw.
Table II compares the performance of the algorithms in

RDNs with those in the corresponding hypercubes. We can
see that the communication times of the collective commu-
nications in RDNs are very close to those in hypercubes
although there are more links in hypercubes than in RDNs.

Table II
COMMUNICATION TIMES

Pattern 7-cube RDN1(B)

One2All B 7ts + 7mtw 8ts + 8mtw

One2All P 7ts + 127mtw 8ts + 127mtw

All2All B 7ts + 127mtw 8ts + 134mtw

All2All P 7ts + 448mtw 8ts + 512mtw

Pattern 15-cube RDN2(B)

One2All B 15ts + 15mtw 18ts + 18mtw

One2All P 15ts + 32767mtw 18ts + 33783mtw

All2All B 15ts + 32767mtw 18ts + 33925mtw

All2All P 15ts + 245760mtw 18ts + 294912mtw

VII. CONCLUDING REMARKS

In this paper, we showed efficient routing algorithms for
collective communications in a newly proposed network,
RDN. The RDN is a very interesting and versatile intercon-
nection network for MPPs. It is expected to be a potential
candidate for high-performance interconnection of super-
computers of next generations. Collective communication
lies at the center of parallel computing applications. Our
results show that collective communication can be done
efficiently in RDN. There are many other aspects of the
RDN that can further widen the possible applications that
might fit in the RDN and the parallel computer systems using
RDN as its interconnection network. Some of the issues are
listed below.

1) Develop efficient routing algorithms for other fre-
quently used communication patterns such as multicast
or fault-tolerant routing.

2) Evaluate the architecture complexity vs. performance
of benchmarks.

3) Investigate the embedding of other frequently used
topologies into a RDN.
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