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Abstract

Recursive Dual-Net (RDN) was proposed recently as an
effective, high-performance interconnection network for su-
percomputers with millions of nodes. A Recursive Dual-
Net RDN(B) is recursively constructed on a base symmet-
ric network B. At each iteration, the network is extended
through dual-construction. The dual-construction extends
a symmetric graph G into a symmetric graph G′ with size
2n2 and node-degree d + 1, where n and d are the size
and the node-degree of G, respectively. Therefore, a k-level
Recursive Dual-Net RDNk(B) contains (2n0)2k/2 nodes
with a node degree of d0 + k, where n0 and d0 are the size
and the node-degree of the base network B, respectively. In
this paper, we show that, if the base network B is hamil-
tonian, RDNk(B) is hamiltonian. We give an efficient al-
gorithm for constructing a hamiltonian cycle in RDNk(B)
for k > 0. We also show that if the base network is hamil-
tonian connected, RDNk(B) is hamiltonian connected for
any k > 0.

1. Introduction

In massively parallel processor (MPP), the intercon-
nection network plays a crucial role on the issues such
as communication performance, hardware cost, computa-
tional complexity, fault-tolerance, etc. Much research has
been reported in the literatures for interconnection networks
that can be used to connect a large number of nodes (see
[2, 7, 16] for the review of the early work). The follow-
ing two categories have attracted a great research atten-
tion. One is the hypercube-like family that has the advan-
tage of short diameters for high-performance computation
and efficient communication [5, 8, 10, 13, 14]. The other
is 2D/3D mesh or torus that has the advantage of small
and fixed node-degrees and easy implementations. Tradi-
tionally, most MPPs in the history including those built by
NASA, CRAY, FGPS, IBM, etc., use 2D/3D mesh or torus

or their variations with extra diagonal links. The recursive
networks also have been proposed as effective interconnec-
tion networks for parallel computers of large scale. For ex-
ample, the WK-recursive network [3, 17] is a class of recur-
sive scalable networks. It offers a high-degree of regularity,
scalability, and symmetry and has a compact VLSI imple-
mentation.

Recently, due to the advance in computer technologies,
the community of supercomputers rises competition to con-
struct high-performance supercomputers containing hun-
dreds of thousands of nodes [15]. In coming decades, su-
percomputers containing millions of nodes will be built. For
such very-large-scale supercomputers, the traditional inter-
connection networks such as hypercube or mesh/torus [1]
will have either large node degree or long diameter. New
interconnection networks that have the merits of traditional
networks such as node and edge symmetry and recursive
structure etc., and also have small node degree and short
diameter are critical for very large-scale supercomputers.

In this paper, we first introduce a new interconnection
network, call Recursive Dual-Net [12], that was proposed
as a candidate of interconnection networks for the super-
computers of the next generation. A Recursive Dual-Net
RDN(B) is based on a recursive dual-construction of a
base network B. The dual-construction extends a network
with n nodes and node-degree d to a network with 2n2

nodes and node-degree d + 1. A k-level Recursive Dual-
Net RDNk(B), also denoted as RDNk(B(n0)), can have
(2n0)2k/2 nodes with node degree of d0 + k where n0 and
d0 are the number of nodes and node degree of the 0-level
Recursive Dual-Net, or the base network B, respectively.
We can see that the Recursive Dual-Net can connect a huge
number of nodes with just a small number of links per node.
Meanwhile, if the base network is a symmetric network, the
Recursive Dual-Net is also a symmetric network.

Recursive Dual-Net has much shorter diameter than
WK-recursive network, and smaller node-degree than hy-
percube. It is very flexible since its base network can be
any popular symmetric network of small size. For exam-



ple, if the base network B(25) is a 5-ary, 2-cube with size
25 and node-degree 4 then RDN2(B(25)) has 3,125,000
nodes with 6 links per node and a diameter of 22. Another
example is RDN2(B(27)), where the base network B(27)
is a 3-ary, 3-cube. It has 4,251,528 nodes with 8 links per
node and a diameter of 18.

Linear array and ring are two fundamental networks and
many algorithms were designed based on linear array and
ring [6]. Thus embedding linear array or ring in networks
is important for emulating those algorithms. A hamiltonian
cycle of an undirected graph G is a simple cycle that con-
tains every node in G exactly once. A hamiltonian path in a
graph is a simple path that visits every node exactly once. A
graph that contains a hamiltonian cycle is said to be hamil-
tonian. A graph is said to be hamiltonian connected if there
is a hamiltonian path between any two distinct nodes in the
graph.

Two algorithms for embedding a hamiltonian cycle in
dual-cube and metacube were given in [9] and [11], respec-
tively. Fu proved that the WK-recursive network is hamil-
tonian connected [4]. In this paper, we show that the Recur-
sive Dual-Net is hamiltonian if the base network is hamilto-
nian and gives an efficient algorithm for the cycle construc-
tion. We also show that if the base network is hamiltonian
connected, the Recursive Dual-Net is also hamiltonian con-
nected.

The rest of the paper is organized as follows. Section 2
introduce the Recursive Dual-Net topology. Section 3 gives
an efficient algorithm for constructing a hamiltonian cycle.
Section 4 proves that if the base network is hamiltonian
connected, then the Recursive Dual-Net is also hamiltonian
connected. Section 5 concludes the paper.

2. Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted
as |G|, is the number of vertices. A path from node s to
node t in G is denoted by s → t. The length of the path
is the number of edges in the path. For any two nodes s
and t in G, we denote D(s, t) as the length of a shortest
path connecting s and t. The diameter of G is defined as
D(G) = max{D(s, t)|s, t ∈ G}. For any two nodes s and
t in G, if there is a path connecting s and t, we say G is a
connected graph.

Suppose we have a symmetric connected graph B and
there are n0 nodes inB and the node degree is d0. A Recur-
sive Dual-Net RDN(B), also denoted as RDNk(B(n0)),
can be recursively defined as follows:

1. RDN0(B) = B is a symmetric connected graph with
n0 nodes, called base network;

2. For k > 0, an RDNk(B) is constructed from

RDNk−1(B) by a dual-construction as explained be-
low (also see Figure 1).

RDNk−1(B) RDNk(B)

type
0

type
1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Figure 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as
a cluster of level k and nk−1 = |RDNk−1(B)|. An
RDNk(B) is a graph that contains 2nk−1 clusters of level
k as subgraphs. These clusters are divided into two dis-
joint sets with each set containing nk−1 clusters. Each
cluster in one set is said to be of type 0, denoted as C0

i ,
where 0 ≤ i ≤ nk−1 − 1 is the cluster ID. Each clus-
ter in the other set is of type 1, denoted as C1

j , where
0 ≤ j ≤ nk−1−1 is the cluster ID. At level k, each node in
a cluster has a new link to a node in a distinct cluster of the
other type. We call this link cross-edge of level k. By fol-
lowing this rule, for each pair of clusters C0

i and C1
j , there

is a unique edge connecting a node in C0
i and a node in C1

j ,
0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there are nk−1 nodes
within each cluster RDNk−1(B).

Figure 2. A Recursive Dual-Net RDN1(B(3))

We give two simple examples of Recursive Dual-Nets
with k = 1 and 2, in which the base network is a ring
with 3 nodes, in Figure 2 and Figure 3, respectively. Fig-
ure 2 depicts an RDN1(B(3)) network. There are 3
nodes in the base network, therefore the number of nodes
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Figure 3. A Recursive Dual-Net RDN2(B(3))

in RDN1(B(3)) is 2 × 32, or 18. Figure 3 shows the
RDN2(B(3)) constructed from the RDN1(B(3)) in Fig-
ure 2. We did not show all the nodes in the figure. The
number of nodes in RDN2(B(3)) is 2× 182, or 648.

Similarly, we can construct an RDN3(B(3)) contain-
ing 2 × 6482, or 839,808 nodes with node-degree of 5 and
diameter of 22. In contrast, the 839,808-node 3D torus
machine (adopt by IBM Blue Gene/L [1]) configured as
108×108×72 nodes, the diameter is equal to 54+54+36 =
144 with a node degree of 6.

We can see from the recursive dual-construction de-
scribed above that an RDNk(B) is a symmetric connected
network with node-degree d0 + k, where d0 is the node-
degree of the base network B. The number of nodes nk in
RDNk(B) satisfies the recurrence nk = 2n2

k−1 for k > 0.
Solving the recurrence, we get nk = (2n0)2k/2.

u

u′

w

w′

v

Dk−1

Dk−1

1 1

Figure 4. The diameter of the Recursive Dual-Net

Concerning the diameter Dk of RDNk(B), we know
that the worst-case (the longest one) for the shortest path

P (u, v) connecting any two nodes u and v in RDNk(B)
is as follow: u and v are of the same type and path P =
u → u′ → w → w′ → v, where u → u′ and w → w′

are cross-edges of level k, and |u′ → w| = |w′ → v| =
Dk−1, as shown as in Figure 4. Therefore, the diameter
of RDNk(B) satisfies the recurrence Dk = 2Dk−1 + 2
for k > 0. Solving the recurrence, we get Dk = 2kD0 +
2k+1 − 2, where D0 is the diameter of the base network.

The bisection bandwidth is important for fault-tolerance.
Next, we investigate the bisection bandwidth of the
RDNk(B) for k ≥ 1.

From the dual-construction, we know that there is no
link between the clusters of level k that are of the same
type. Therefore, the minimum number of links those re-
moval will disconnect two halves occurs when both halves
contain equal numbers of clusters of type 0 or 1. That is,
the minimum number of links those removal will disconnect
two halves equals to half of the total number of cross-edges
of level k which is d(2n0)2k/8e.

Notice that if n0 is odd and k = 1 we should di-
vide the RDN into two halves such that one half contains
bn0/2c (or dn0/2e) type 0 clusters and dn0/2e (or bn0/2c)
type 1 clusters. For example, the bisection bandwidth of
RDN1(B(3)) is d62/8e = d9/2e = 5.

We summarize the discussion above about the funda-
mental properties of the Recursive Dual-Net in the follow-
ing theorem.

Theorem 1 Assume that the base network is a symmetric
graph with size n0, node-degree d0, and the diameter D0.
Then, the size, the node-degree, the diameter and the bi-
section bandwidth of RDNk(B) are (2n0)2k/2, d0 + k,
2kD0 + 2k+1 − 2 and d(2n0)2k/8e, respectively.
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3. Hamiltonian Cycle Embedding

In this section, we show how to construct a hamiltonian
cycle in RDNk(B) recursively. First, we find a hamilto-
nian cycle in the base network RDN0(B) and assign i,
0 ≤ i ≤ n0 − 1, to each node in the cycle sequentially
such that node i and node ((i+ 1) mod n0) are neighbors
in the cycle.

To construct anRDN1(B) fromRDN0(B), we prepare
2n0 clusters (RDN0(B)) and divide them equally to two
sets: type 0 and type 1. Each cluster in each type is assigned
a number i, 0 ≤ i ≤ n0 − 1.

Then the ID of a node u in RDN1(B) is a triple
(u0, u1, u2), where u0 is a 0 or a 1, we call it typeID; u1

is the cluster number, we call it clusterID; and u2 is the
node number within a cluster, we call it nodeID.

With this ID presentation, (u, v) is a cross-edge of level
1 in RDN1(B) iff u0 6= v0, u1 = v2, and u2 = v1.
For example, there is a cross edge connecting node (0, 2, 1)
and node (1, 1, 2). Figure 5 gives the presentation of the
RDN1(B(3)). Note that the “∗” will be replaced with
nodeID. For example, in the first cluster, the three nodes’
IDs are (0, 0, 0), (0, 0, 1), and (0, 0, 2); in the last cluster,
the three nodes’ IDs are (1, 2, 0), (1, 2, 1), and (1, 2, 2). The
ID of a node u in RDN1(B) can also be presented by a
unique integer i = u0n

2
0 +u1n0 +u2, for 0 ≤ i ≤ 2n2

0− 1.
For example, the last node (1, 2, 2) in Figure 5 where n0 =
3 has a number 9 + 6 + 2 = 17.

1 20 1 20 1 20

0 1 2 0 1 2 0 1 2

(1, 0, ∗) (1, 1, ∗) (1, 2, ∗)

(0, 0, ∗) (0, 1, ∗) (0, 2, ∗)

Figure 5. Presentation of RDN1(B(3))

For RDN2(B), the ID of node u is also in the format
of (u0, u1, u2) where u0 is a 0 or a 1 but u1 and u2 are
IDs defined in RDN1(B). For example, the ID of the
first node in an RDN2(B(3)) is (0, (0, 0, 0), (0, 0, 0)); the
ID of the last node is (1, (1, 2, 2), (1, 2, 2)). In general,
IDi, 1 ≤ i ≤ k, can be defined recursively as follows:
IDi = (T, IDi−1, IDi−1), where T = 0 or 1. Fig. 6 (in
the next page) gives the presentation of the RDN2(B(3)).

Now, we describe how to construct a hamiltonian cycle
in RDN1(B). We first constructs a virtual hamiltonian cy-
cle. A virtual hamiltonian cycle is a cycle that connects all

the clusters with cross edges and each cluster contributes
two nodes u and v and one edge (u, v), as shown as in Fig-
ure 7.

Figure 7. Virtual hamiltonian cycle

(a) A virtual hamiltonian cycle

(b) A hamiltonian cycle

0 1 2

(0, 0, ∗)

0 1 2

(0, 1, ∗)

0 1 2

(0, 2, ∗)

0 1 2

(1, 0, ∗)

0 1 2

(1, 1, ∗)

0 1 2

(1, 2, ∗)

0 1 2

(0, 0, ∗)

0 1 2

(0, 1, ∗)

0 1 2

(0, 2, ∗)

0 1 2

(1, 0, ∗)

0 1 2

(1, 1, ∗)

0 1 2

(1, 2, ∗)

Figure 8. A hamiltonian cycle inRDN1(B(3))

Then, a virtual hamiltonian cycle could be
(0, 0, 0)→ (0, 0, 1)→ (1, 1, 0)→ (1, 1, 1)→
(0, 1, 1)→ (0, 1, 2)→ (1, 2, 1)→ (1, 2, 2)→
(0, 2, 2)→ (0, 2, 3)→ (1, 3, 2)→ (1, 3, 3)→
· · · →
(0,m− 2,m− 2)→ (0,m− 2,m− 1)→
(1,m− 1,m− 2)→ (1,m− 1,m− 1)→
(0,m− 1,m− 1)→ (0,m− 1, 0)→
(1, 0,m− 1)→ (1, 0, 0)→ (0, 0, 0).

Finally, in each cluster, we replace the edge (u, v) with a
hamiltonian path u → v so that we get a hamiltonian cycle
containing all the 2n2

0 nodes in the RDN1(B). Figure 8(b)
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1 2

(0, 0, ∗) (0, 1, ∗) (0, 2, ∗)

0 1 2

(1, 0, ∗) (1, 1, ∗) (1, 2, ∗)

0 1 2 0 1 2

0 1 2 0 1

(0, (0, 0, 0), ∗)

1 2

0 1 2

0 1 2 0 1 2

0 1 2 0 1

(0, (1, 2, 2), ∗)

1 2

0 1 2

0 1 2 0 1 2

0 1 2 0 1

(1, (0, 0, 0), ∗)

1 2

0 1 2

0 1 2 0 1 2

0 1 2 0 1

(1, (1, 2, 2), ∗)

0 0

2

0

2 2

2

0

(0, 0, ∗) (0, 1, ∗) (0, 2, ∗)

(1, 0, ∗) (1, 1, ∗) (1, 2, ∗)

(0, 0, ∗) (0, 1, ∗) (0, 2, ∗)

(1, 0, ∗) (1, 1, ∗) (1, 2, ∗)

(0, 0, ∗) (0, 1, ∗) (0, 2, ∗)

(1, 0, ∗) (1, 1, ∗) (1, 2, ∗)

Figure 6. Presentation of RDN2(B(3))

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

(0,(0,0,0),*) (0,(0,0,1),*) (0,(0,0,2),*) (0,(0,1,0),*) (0,(0,1,1),*) (0,(0,1,2),*) (0,(0,2,0),*) (0,(0,2,1),*) (0,(0,2,2),*)

(0,(1,0,0),*) (0,(1,0,1),*) (0,(1,0,2),*) (0,(1,1,0),*) (0,(1,1,1),*) (0,(1,1,2),*) (0,(1,2,0),*) (0,(1,2,1),*) (0,(1,2,2),*)

(1,(0,0,0),*) (1,(0,0,1),*) (1,(0,0,2),*) (1,(0,1,0),*) (1,(0,1,1),*) (1,(0,1,2),*) (1,(0,2,0),*) (1,(0,2,1),*) (1,(0,2,2),*)

(1,(1,0,0),*) (1,(1,0,1),*) (1,(1,0,2),*) (1,(1,1,0),*) (1,(1,1,1),*) (1,(1,1,2),*) (1,(1,2,0),*) (1,(1,2,1),*) (1,(1,2,2),*)

Figure 9. A hamiltonian cycle in RDN2(B(3))

shows an example of a hamiltonian cycle in RDN2(B(3)).
Figure 8(a) is the virtual hamiltonian cycle.

Then the hamiltonian cycle in an RDN1(B) is used for
constructing a hamiltonian cycle in an RDN2(B). The
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virtual hamiltonian cycle in RDN2(B) can be constructed
along with the hamiltonian cycle in RDN1(B). For ex-
ample, by following the node sequence shown in Fig-
ure 8(b), we can construct a virtual hamiltonian cycle in
RDN2(B(3)):

(0,(0,0,0),(0,0,0))→ (0,(0,0,0),(0,0,2))→ (1,(0,0,2),(0,0,0))→ (1,(0,0,2),(0,0,2))→

(0,(0,0,2),(0,0,2))→ (0,(0,0,2),(0,0,1))→ (1,(0,0,1),(0,0,2))→ (1,(0,0,1),(0,0,1))→

(0,(0,0,1),(0,0,1))→ (0,(0,0,1),(1,1,0))→ (1,(1,1,0),(0,0,1))→ (1,(1,1,0),(1,1,0))→

(0,(1,1,0),(1,1,0))→ (0,(1,1,0),(1,1,2))→ (1,(1,1,2),(1,1,0))→ (1,(1,1,2),(1,1,2))→

(0,(1,1,2),(1,1,2))→ (0,(1,1,2),(1,1,1))→ (1,(1,1,1),(1,1,2))→ (1,(1,1,1),(1,1,1))→

(0,(1,1,1),(1,1,1))→ (0,(1,1,1),(0,1,1))→ (1,(0,1,1),(1,1,1))→ (1,(0,1,1),(0,1,1))→

(0,(0,1,1),(0,1,1))→ (0,(0,1,1),(0,1,0))→ (1,(0,1,0),(0,1,1))→ (1,(0,1,0),(0,1,0))→

(0,(0,1,0),(0,1,0))→ (0,(0,1,0),(0,1,2))→ (1,(0,1,2),(0,1,0))→ (1,(0,1,2),(0,1,2))→

(0,(0,1,2),(0,1,2))→ (0,(0,1,2),(1,2,1))→ (1,(1,2,1),(0,1,2))→ (1,(1,2,1),(1,2,1))→

(0,(1,2,1),(1,2,1))→ (0,(1,2,1),(1,2,0))→ (1,(1,2,0),(1,2,1))→ (1,(1,2,0),(1,2,0))→

(0,(1,2,0),(1,2,0))→ (0,(1,2,0),(1,2,2))→ (1,(1,2,2),(1,2,0))→ (1,(1,2,2),(1,2,2))→

(0,(1,2,2),(1,2,2))→ (0,(1,2,2),(0,2,2))→ (1,(0,2,2),(1,2,2))→ (1,(0,2,2),(0,2,2))→

(0,(0,2,2),(0,2,2))→ (0,(0,2,2),(0,2,1))→ (1,(0,2,1),(0,2,2))→ (1,(0,2,1),(0,2,1))→

(0,(0,2,1),(0,2,1))→ (0,(0,2,1),(0,2,0))→ (1,(0,2,0),(0,2,1))→ (1,(0,2,0),(0,2,0))→

(0,(0,2,0),(0,2,0))→ (0,(0,2,0),(1,0,2))→ (1,(1,0,2),(0,2,0))→ (1,(1,0,2),(1,0,2))→

(0,(1,0,2),(1,0,2))→ (0,(1,0,2),(1,0,1))→ (1,(1,0,1),(1,0,2))→ (1,(1,0,1),(1,0,1))→

(0,(1,0,1),(1,0,1))→ (0,(1,0,1),(1,0,0))→ (1,(1,0,0),(1,0,1))→ (1,(1,0,0),(1,0,0))→

(0,(1,0,0),(1,0,0))→ (0,(1,0,0),(0,0,0))→ (1,(0,0,0),(1,0,0))→ (1,(0,0,0),(0,0,0))→

By replacing every edge in clusters with a path, we can
get a hamiltonian cycle. Figure 9 shows a hamiltonian cy-
cle in RDN2(B(3)) in which a cluster is an RDN1(B(3))
given in Figure 8(b). The solid cycles are the nodes in the
virtual hamiltonian cycle. The algorithm for embedding a
hamiltonian cycle in an RDN(B) is given in Algorithm 1.

In Algorithm 1, there are two arrays, HC and V HC, to
store node IDs in a hamiltonian cycle and in a virtual hamil-
tonian cycle, respectively. For simplicity, if there are n
nodes in a cycle, we store n+1 nodes’ IDs inHC: The last
node ID is the same as the first node ID. The algorithm first
constructs a virtual hamiltonian cycle V HC in RDN1(B)
based on the hamiltonian cycle HC in RDN0(B). Then
each pair-node in V HC is replaced with a hamiltonian path
in RDN0(B). We got a hamiltonian cycle in RDN1(B).
Let the cycle be HC, repeat the same process until the
hamiltonian cycle in RDNk(B) is constructed.

Theorem 2 If the base network B is hamiltonian then
RDNk(B) is hamiltonian for any k > 0.

Proof: Suppose that nodes 0, 1, . . . , n0 − 1 form a hamil-
tonian cycle CB in the base network B. That is, node i and
node (i+ 1) mod n0 are neighbors. For k = 1, the virtual
hamiltonian cycle constructed in Algorithm 1 is a cycle that

Algorithm 1: RDN HC(n0, k)
begin

for i← 0 to n0 do /* in the base nrtwork */
HC[i]← i; /* HC: hamiltonian cycle */

endfor
HC[n0]← 0; /* last node = first node */
for j ← 0 to k − 1 do /* k levels */
n← (2n0)2j/2; /* # of nodes in RDNk−1(B) */
V HC ← ∅; /* V HC: virtual hamiltonian cycle */
for i← 0 to n− 1 do /* n nodes */
u← HC[i];
v ← HC[i+ 1];
V HC ← V HC ∪ (0, u, u); /* node N0, type 0 */
V HC ← V HC ∪ (0, u, v); /* node N1, type 0 */
V HC ← V HC ∪ (1, v, u); /* node N2, type 1 */
V HC ← V HC ∪ (1, v, v); /* node N3, type 1 */

endfor
for each pair nodes (u, v) in V HC do

Replace (u, v) with a hamiltonian path u→ v;
endfor
u← HC[0];
HC ← V HC ∪ (0, u, u); /* last node = first node */

endfor
end

consists of 4n0 nodes and travels through all the 2n0 clus-
ters: Since nodes u and v are two neighbors in the hamil-
tonian cycle in B, node N0 with ID (0, u, u) and node N1

with ID (0, u, v) are two neighbor nodes of type 0 in CB ;
node N2 with ID (1, v, u) and node N3 with ID (1, v, v)
are two neighbor nodes of type 1 in CB ; and N1 and N2 are
connected with a cross edge. Replacing nodes (N0, N1) and
(N2, N3) with (N0 → N1) and (N2 → N3) inside CB , re-
spectively, and doing the same for all the pair nodes in CB ,
a cycle that contains 2n2

0 nodes is constructed.
To embed a hamiltonian cycle in RDNk(B) for k > 1,

the algorithm takes the hamiltonian cycle constructed in
RDNk−1(B) as the base network and apply the same pro-
cess as in RDN1(B). o

Corollary 1 If the base network B is hamiltonian then
there are b(2n0)k−1/4cdisjoint virtual hamiltonian cycles
in RDNk(B) where n0 is the number of nodes in B.

Proof: Consider the RDN(B) with k = 1. Notice that
only two adjacent nodes of the hamiltonian cycle in the
base network B appear in the virtual hamiltonian cycle.
Algorithm 1 constructs a virtual hamiltonian cycle from
node (0, 0, 0). If the starting node is (0, 0, 2i) for i =
0, 1, . . . , n0/2 − 1, then the n0/2 virtual hamiltonian cy-
cles are disjoint. Since we can use a hamiltonian cycle con-
structed in RDNk−1(B) as the base network, the argument
can be expanded to any level of k. o
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Figure 10. Two disjoint virtual hamiltonian cycles

As an example, Figure 10 shows two disjoint virtual
hamiltonian cycles in an RDN1(B(4)) where B(4) is a 4-
node ring. One virtual hamiltonian cycle starts from node
(0, 0, 0), the other starts from node (0, 0, 2).

4. Hamiltonian Connectedness

If there is a hamiltonian path between any two distinct
nodes in a graph, we say that this graph is hamiltonian con-
nected. We show the hamiltonian connectedness of the Re-
cursive Dual-Net. Note that a 3-node ring is a hamiltonian
connected graph but a 4-node ring is not. If the base net-
work is hamiltonian connected, any two distinct nodes in
the base network can be used when we construct the vir-
tual hamiltonian cycle because there is always a hamilto-
nian path in the base network between the two nodes.

Theorem 3 If the base network B is hamiltonian con-
nected, the RDNk(B) is also hamiltonian connected for
any k > 0.

Proof: Let the k-level cluster containing node u be Cu.
We prove the theorem by induction on k. Assume that
RDNk−1(B) is hamiltonian connected. For any two dis-
tinct nodes u and v in RDNk(B), we want to show that
there is a hamiltonian path u→ v. We have three cases.

u

v
t

s t′

s′

Figure 11. Case 1: u and v are of different types

Case 1: u and v are of different types. This is the sim-
plest case. Let s ∈ Cu and s 6= u, t ∈ Cv and t 6= v. There
are cross edges including (s, s′) and (t, t′) that form a vir-
tual hamiltonian path V HP (s, t). Then the hamiltonian
path P (u, v) in RDN(B) can be u → s, s′ → t′, t → v
where s′ → t′ is a path connecting all the nodes in the other
clusters than Cu and Cv . This is illustrated in Figure 11.

u
v

w

w′u′

Figure 12. Case 2: u and v are in a same cluster

Case 2: u and v are in a same cluster. This is also simple.
Find a hamiltonian path u, w → v within the cluster Cu.
Then there is a virtual hamiltonian path V HP (u,w). The
hamiltonian path P (u, v) in RDNk(B) can be u, u′ →
w′, w → v where u′ → w′ is a path connecting all the
nodes in the other clusters than Cu. This is illustrated in
Figure 12.

u v
s

s′
t′

t
w

w′ v′

Figure 13. Case 3: u and v are in different clusters of
the same type

Case 3: u and v are different clusters of the same type.
This case is a little bit complex. In Cu, find a hamilto-
nian path u → s where s 6= u. In Cs′ , find a hamilto-
nian path s′ → t′ where t ∈ Cv . In Cv , find a hamilto-
nian path v, w → t. Then the hamiltonian path P (u, v) in
RDNk(B) can be u → s, s′ → t′, t → w, w′ → v′, v
where w′ → v′ is a path connecting all the nodes in the
other clusters than Cu, Cv , and Ct′ . This is illustrated in
Figure 13. o
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5. Concluding Remarks

The Recursive Dual-Net can connect a large number of
nodes with a small node-degree and a short diameter. It is
a potential candidate for the interconnection network of the
supercomputers of the next generation that have more than
one million of nodes.

We can select any of popular networks of small sizes that
are symmetric as the base network and then connect multi-
ple base modules with cross links (cables) to construct a
Recursive Dual-Net of very large scale. The base networks
can be implemented in a NoC VLSI and line cables may be
used as the cross links to connect PCB modules in cabinets.

We showed that the Recursive Dual-Net keeps the prop-
erties of the base network including the hamiltonian con-
nectivities and presented an efficient algorithm to embed a
hamiltonian cycle in the Recursive Dual-Net. Fault-tolerant
cycle embedding in the Recursive Dual-Net may be inter-
esting for further research.
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