
Proceedings of the Intl. Symposium on CIS. Shanghai, China, Dec. 16-18, 2004. pp.51-56

Binomial-Tree Fault Tolerant Routing in
Dual-Cubes with Large Number of Faulty Nodes

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science, Hosei University, Tokyo 184-8584 Japan
2 Department of Computer Hardware, University of Aizu, Fukushima 965-8580 Japan

Abstract. A dual-cube DC(m) has m + 1 links per node where m is
the degree of a cluster (m-cube), and one extra link is used for connec-
tion between clusters. The dual-cube mitigates the problem of increasing
number of links in the large-scale hypercube network while keeps most
of the topological properties of the hypercube network. In this paper,
we propose efficient algorithms for finding a nonfaulty routing path be-
tween any two nonfaulty nodes in the dual-cube with a large number
of faulty nodes. A node v ∈ DC(m) is called k-safe if v has at least k
nonfaulty neighbors. The DC(m) is called k-safe if every node in DC(m)
is k-safe. The first algorithm presented in this paper is an off-line algo-
rithm that uses global information of faulty status. It finds a nonfaulty
path of length at most d(s, t) + O(k2) in O(|F | + m) time for any two
nonfaulty nodes s and t in the k-safe DC(m) with number of faulty nodes
|F | < 2k(m + 1 − k), where 0 ≤ k ≤ m/2. The second algorithm is an
online algorithm that uses local information only. It can find a fault-
free path with high probability in an arbitrarily faulty dual-cube with
unbounded number of faulty nodes.

1 Introduction

As the size of computer networks increases continuously, the node failures are
inevitable. Routing in computer networks with faults has been more important
and has attracted considerable attention in the last decade. Hypercube is a
popular network studied by researchers and adopted in many implementations
of parallel computer systems, such as Intel iPSC, the nCUBE, the Connection
Machine CM-2, and the SGI’s Origin 2000 and Origin 3000. Previous research
has shown that a hypercube can tolerate a constant fraction of faulty nodes. For
example, Najjar et al[1] demonstrated that for the 10-cube, 33 percent of nodes
can fail and the network can still remain connected with a probability of 99
percent. Gu and Peng[2] proposed off-line routing algorithms for a k-safe n-cube
with up to 2k(n− k)− 1 faulty nodes, where a node u is k-safe if u has at least
k nonfaulty neighbor nodes, and an n-cube is k-safe if all nodes in the cube are
k-safe. Chen et al[3] also proposed a distributed routing algorithm in hypercube
with large amount of faulty nodes based on local subcube-connectivity.

52

A dual-cube DC(m)[4, 5] is an undirected graph on the node set {0, 1}2m+1

and there is a link between two nodes u = (u0u1 . . . umum+1 . . . u2m) and v =
(v0v1 . . . vmvm+1 . . . v2m) if and only if the following conditions are satisfied: 1)
u and v differ exactly in one bit position i, 2) if 1 ≤ i ≤ m then u0 = v0 = 1
and 3) if m + 1 ≤ i ≤ 2m then u0 = v0 = 0. We use (u : v) to denote a link
connecting nodes u and v, and (u→ v) or (v1 : v2 : . . . : vr) to denote a path or a
cycle. For a node u = (u1 . . . un), u(i) denotes the node (u1 . . . ui−1uiui+1 . . . un),
where ui is the logical negation of ui. The set of neighbors of a subgraph T in
G is denoted as N(T) = {v|(w : v) ∈ E(G), w ∈ V (T), v 6∈ V (T)}.

2 Fault Tolerant Routing Algorithm for k-Safe Dual-Cube

We first briefly introduce the algorithm for the fault-tolerant routing in k-safe
hypercubes[2]. Given a k-safe n-cube Hn, a set of faulty nodes F with |F | <
2k(n− k), and two nonfaulty nodes s and t, the idea of finding a fault-free path
s→ t is as follows. First, partition Hn along dimension i into two (n− 1)-cubes,
H0
n−1 and H1

n−1, such that s and t are separated, say s ∈ H0
n−1 and t ∈ H1

n−1.
Assume that |F ∩ H1

n−1| ≤ |F |/2. Then, we want to route s to H1
n−1 by a

fault-free path of length at most k+ 2. This can be done by first constructing a
fault-free k-binomial tree with root s Tk(s) in Hn. Since Hn is k-safe the Tk(s)
can be found. If Tk(s) ∩H1

n−1 6= ∅ or u(i) is nonfaulty, where u ∈ Tk(s), then s
is routed to H1

n−1. Otherwise, since |F | < 2k(n− k) there exists a u ∈ N(Tk(s))
such that u and u(i) are nonfaulty. Therefore, we can route s to s′ ∈ H1

n−1.
The fault-free path s′ → t in H1

n−1 can be found recursively since H1
n−1 is

(k− 1)-safe and |F ∩H1
n−1| < 2k−1((n− 1)− (k− 1)). The recursion halts when

k = 0. In this case, |F | < n and a fault-free path s → t of length at most
d(s, t) + 2 can be found in O(n) time[6]. The fault-free path s → s′ of length
at most k + 2 can be found in O(|F |) time. Since at most half of the faulty
nodes are involved in the next recursion. The time complexity of the algorithm
T (n) =

∑k−1
i=0 O(|F |/2i) + O(n) = O(|F | + n). The length of the path, L(k),

satisfies the equation L(k) ≤ L(k − 1) + (k + 2) if k > 0, and L(0) ≤ d(s, t) + 2.
From this, L(k) = d(s, t) + O(k2). The algorithm described above is denoted
as Hypercube Routing(Hn, s, t, k, F, P), where P is the fault-free path s → t in
Hn.

A dual-cube DC(m) is k-safe if every node in DC(m) is k-safe. We present an
algorithm for finding a fault-free path s→ t in a k-safe DC(m) with number of
faulty nodes |F | < 2k(m− k + 1). First, we describe two key techniques for the
design of the algorithm. The first one is called virtual cube. Given two distinct
clusters of the same class in DC(m), say Cs and Ct are of class 0, the virtual
(m + 1)-cube V Hm+1 = Cs ∪ Ct ∪ {(u : v)|u ∈ Cs, v ∈ Ct, and ui = vi for all
i,m+ 1 ≤ i ≤ 2m}.

We call the edge (u : v) virtual edge. A virtual edge in V Hm+1 corresponds to
a path (u→ v) in DC(m), and (s→ t) = (s→ u : u′ = u(0) → v′ = v(0) : v → t),
where (u′ → v′) is a path of length at most m in Cu′ , a cluster of class 1. The 2m

paths in DC(m) corresponding to the 2m virtual edges in V Hm+1 are disjoint.

53

The virtual edge (u : v) is nonfaulty if nodes u, v, u′, and v′ are nonfaulty and
|F ∩ Cu′ | < 2k−1(m − k + 1). If the virtual edge is nonfaulty then since Cu′ is
a (k − 1)-safe m-cube, a fault-free path u→ v in DC(m) can be found. Finding
all faulty virtual edge takes at most O(|F |) time.

The second one is a technique to find a fault-free path s → u : u′ = u(0) of
length at most k + 2, where path s → u is a path in Cs under the condition
that DC(m) is k-safe and |F | < 2k(m− k+ 1). The path s→ u can be found by
constructing a fault-free k-binomial-tree Tk(s) in Cs, and then considering the
nodes in N(Tk(s)).

Algorithm 1 (Binomial Tree Routing(DC(m), s, F, P))
Input: DC(m), a nonfaulty node s, and a set of faulty nodes F

with |F | < 2k(m− k + 1)
Output: a fault-free path P = (s→ u : u′) of length at most k + 2
begin

P = ∅;
find a fault-free (k − 1)-binomial tree Tk−1(s) in Cs;
if there exists a nonfaulty u′ for u ∈ Tk−1(s)
then P = P ∪ (s→ u : u′);
else find a fault-free k-binomial tree

Tk(s) = Tk−1(s) ∪ {(u : u(i))|u ∈ Tk−1(s)},
where u(i) is nonfaulty, and i 6= ij , 1 ≤ j ≤ r, the dimensions
used for the path s→ u in Tk−1;
find a node u ∈ N(Tk(s)) ∩ Cs such that u and u′ are nonfaulty;
P = P ∪ (s→ w : u : u′), where s→ w is a path in Tk(s);

end

The details is depicted by Algorithm 1. The next lemma shows that Bino-
mial Tree Routing algorithm is correct.

Lemma 1. For 0 ≤ k ≤ m/2, and a nonfaulty node s in a k-safe DC(m) with
number of faulty nodes |F | < 2k(m − k + 1), the fault-free path (s → u : u′) of
length at most k + 2 can be found in O(|F |+m) time.

Proof: From Binomial Tree Routing algorithm, since DC(m) is k-safe we know
that either a fault-free Tk(s) in Cs is found or there exists a nonfaulty node
w ∈ Tk−1(s) such that w′ is nonfaulty. In the letter case, let w = u and it is
done. So, we assume that Tk(s) is found and for every w in Tk(s), w′ is faulty. It
was known that for Tk(s) in an m-cube, we have |N(Tk(s))| ≥ 2k(m − k) ([6]).
Since Cs is an m-cube and there are at most |F |−2k < 2k(mk + 1)−2k = 2kmk

faulty nodes in Cs, there exists a node u ∈ N(Tk(s)) such that u and u′ are
nonfaulty.

The main idea of the proposed algorithm is to route s to Ct if s and t are in
different clusters and |F ∩Cs| ≥ |F ∩Ct|. This can be done using the similar idea
of Algorithm 1 and is shown in Algorithm 2, Cluster Routing. The next lemma
shows that the algorithm is correct.

54

Algorithm 2 (Cluster Routing(DC(m), s, t, F, P))
Input: a k-safe DC(m), nodes s and t, Cs and Ct are of the same class,

and a set of faulty nodes F with |F | < 2k(m− k + 1) and |F ∩ Cs| ≥ |F ∩ Ct|
Output: a fault-free path P = (s→ u→ v), where v ∈ Ct

and u→ v is the path corresponding to virtual edge (u : v)
begin

P = ∅;
find a fault-free (k − 1)-binomial tree Tk−1(s) in Cs
if there is a u ∈ Tk−1(s) such that u′ is nonfaulty
then if virtual edge (u : v) is nonfaulty

then P = (s→ u→ v), (u→ v) is a fault-free path in DC(m)
else find a fault-free (k − 1)-binomial tree Tk−1(u′) in Cu′ ;

find a nonfaulty w ∈ N(Tk−1(u′)) ∩ Cu′
such that virtual edge (u = w′ : v) is nonfaulty;
P = (s→ w : u→ v), u→ v is a fault-free path in DC(m)

else find a fault-free k-binomial tree Tk(s) by extending Tk−1(s);
find a nonfaulty u ∈ N(Tk(s)) ∩ Cs
such that virtual edge (u : v) is nonfaulty;
P = (s→ u→ v), u→ v is a fault-free path in DC(m);

end

Lemma 2. For 0 ≤ k ≤ m/2, and nonfaulty nodes s and t in a k-safe DC(m)
with number of faulty nodes |F | < 2k(m−k+1), the fault-free path (s→ u→ v)
can be found in O(|F |+m) time, where (s→ u) is a path in Cs and (u→ v) is
the path corresponding to virtual edge (u : v).

Proof: We divide the proof into two cases. Case 1: Tk(s) is in Cs. Since |N(TK(s))| ≥
2k(m−k+1) we can find a nonfaulty virtual edge (u : v), u ∈ N(Tk(s)). Then we
are done. Case 2: there exists u ∈ Tk−1(s) such that u′ is nonfaulty and virtual
edge is faulty. In this case, we should try to route u′ to Ct using a fault-free
(k − 1)-binomial tree in Cu′ . From Cluster Routing algorithm, since the paths
that route u ∈ N(Tk−1(s)) to Ct and the path that route w ∈ N(Tk−1(u′)) to
Ct are disjoint and there are totally 2k(m− k+ 1) disjoint paths, we claim that
a fault-free path that route s to Ct does exist.

The algorithm that constructs s→ t is shown in Algorithm 3.

Theorem 1. For 0 ≤ k ≤ m/2, and two nonfaulty nodes s and t in in a k-safe
DC(m) with number of faulty nodes |F | < 2k(m−k+1), the fault-free path s→ t
of length at most d(s, t) +O(k2) can be found in O(|F |+m) time.

Proof: The correctness of the DualCube Routing algorithm follows easily from
Binomial Tree Routing, Cluster Routing, and Hypercube Routing algorithms.
The Length of the path L(s, t) and time complexity of the algorithm T (m)
are shown below for Case 1. The other cases follows easily from the algorithm.
L(s, t) ≤ (k + 2) + (d(u′, v′) + 1) + (d(v, t) + O(k2)). Since d(u′, v′) + d(v, t) ≤
d(s, t) + d(s, u) = d(s, t) + k + 1, we have L(s, t) = d(s, t) + O(k2). The time is
O(|F |) for Binomial Tree Routing; O(m) for finding path u→ v; and O(|F |+m)
for Hypercube Routing. Therefore, the running time T (m) = O(|F |+m).

55

Algorithm 3 (DualCube Routing(DC(m), s, t, k, F, P))
Input: DC(m), nonfaulty nodes s and t, and

a set of faulty nodes F with |F | < 2k(m− k + 1)
Output: a fault-free path P = (s→ t)
begin

P = ∅;
Case 1: Cs 6= Ct and class id(s) = class id(t)

Cluster Routing(DC(m), s, F, P);
Hypercube Routing(Ct, v, t, k − 1, F ∩ Ct, P ′);
P = P ∪ P ′;

Case 2: class id(s) 6= class id(t)
Binomial Tree Routing(DC(m), s, F, P);
if Cu′ = Ct
then Hypercube Routing(Ct, u

′, t, k − 1, P);
else find a fault-free path P ′ = (u′ → t) as in Case 1;

P = P ∪ P ′;
Case 3: Cs = Ct

if |F ∩ Cs| < 2k−1(m− (k − 1))
then Hypercube Routing(Cs, s, t, k − 1, P);
else Binomial Tree Routing(DC(m), s, F, P);

Binomial Tree Routing(DC(m), t, F, P ′);
find a fault-free path P ′ = (u′s → u′t) as in Case 1;
P = P ∪ P ′ ∪ (u′s → u′t);

end

3 A Practical Fault-tolerant Routing Algorithm

The proposed algorithm in the previous section requires that the dual-cube is k-
safe. In reality, the chance that the dual-cube will not be k-safe increases when
the number of faulty nodes grows. We propose an efficient routing algorithm
for the fault-tolerant routing in dual-cube containing a large number of faulty
nodes and dual-cube may not be k-safe. In general, without k-safe property, the
fault-free k-binomial tree Tk(s) might not exist and the routing algorithm might
fail to find the fault-free path s → t although the fault-free path does exist.
However, for practical reasons, it is interesting to design an efficient algorithm
that find a fault-free path s → t using only local information of fault status in
the dual-cube with a large number of faulty nodes.

The proposed algorithm for fault tolerant routing in an arbitrary faulty dual-
cube is distributed and local-information-based. The algorithm is similar to algo-
rithm 3. However, the new algorithm doesn’t calculate F while route s to cluster
Ct, and it uses binomial trees of increasing size starting with 0-binomial tree, a
tree of single node. If the algorithm fails to find a fault-free path s → u → v
then it tries 1-binomial tree and so on until either a fault-free path is found or
the k-binomial tree cannot be constructed. Due to the page limitation, we will
not present the details of our algorithm in this draft. The simulations for this

56

algorithm have been conducted with uniformly distribution of faulty nodes in
DC(m) for m = 5, 6, 7, 8 and 9.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

R
a
te

o
f

su
c
c
e
ss

fu
l

ro
u
ti

n
g
p
s

(%
)

Probability of node failures pf (%)

m = 9
m = 8
m = 7
m = 6
m = 5

Fig. 1. Successful routing rate

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

E
x
tr

a
p
a
th
e

(%
)

Probability of node failures pf (%)

m = 5
m = 6
m = 7
m = 8
m = 9

Fig. 2. Path length (%)

The results for successful routing v.s. the node failure rate are shown in
Figure 1. It can be seen from the figure that the successful routing rate is very
high (> 90%) if the node failure rate is less than 30%. The successful routing
rate drop more deeply when the node failure rate is beyond 30%. However, we
can say that in most cases, the successful routing rates are still larger than 50%
with the node failure rates up to 50%. As for the length of the routing path,
we show the results in Figure 2. From the figure, we can say that the fault-free
paths found by our algorithm are very close to the minimum paths in most of the
cases. The experimental data show that the proposed algorithm performs well
in an arbitrarily faulty dual-cubes with possible very large set of faulty nodes.

References

1. Najjar, W., Gaudiot, J.L.: Network resilience: A measure of network fault tolerance.
IEEE Transactions on Computers 39 (1990) 174–181

2. Gu, Q.P., Peng, S.: Unicast in hypercubes with large number of faulty nodes. IEEE
Transactions on Parallel and Distributed Systems 10 (1999) 964–975

3. Chen, J., Wang, G., Chen, S.: Locally subcube-connected hypercube networks:
Theoretical analysis and experimental results. IEEE Transactions on Computers
51 (2002) 530–540

4. Li, Y., Peng, S.: Dual-cubes: a new interconnection network for high-performance
computer clusters. In: Proceedings of the 2000 International Computer Symposium,
Workshop on Computer Architecture, ChiaYi, Taiwan (2000) 51–57

5. Li, Y., Peng, S., Chu, W.: Efficient collective communications in dual-cube. The
Journal of Supercomputing 28 (2004) 71–90

6. Gu, Q.P., Peng, S.: Optimal algorithms for node-to-node fault tolerant routing in
hypercubes. The Computer Journal 39 (1996) 626–629

