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Abstract. In this paper, we propose a universal network, called re-
cursive dual-net (RDN). It can be used as a candidate of effective in-
terconnection networks for massively parallel computers. The RDN is
generated by recursively applying dual-construction on a base-network.
Given a regular and symmetric graph of size n and node-degree d, the
dual-construction generates a regular and symmetric graph of size 2n2

and node-degree d+1. The RDN has many interesting properties includ-
ing low node-degree and small diameter. For example, we can construct
an RDN connecting more than 3-million nodes with only 6 links per
node and a diameter of 22. We investigate the topological properties of
the RDN and compare it to other networks including 3D torus, WK-
recursive network, hypercube, cube-connected-cycle, and dual-cube. We
also describe an efficient routing algorithm for RDN.

Key words: Interconnection networks and routing algorithm

1 Introduction

In massively parallel processor (MPP), the interconnection network plays a cru-
cial role on the issues such as communication performance, hardware cost, com-
putational complexity, fault-tolerance, etc. Much research has been reported in
the literatures for interconnection networks that can be used to connect par-
allel computers of large scale (see [2, 6, 12] for the review of the early work).
The following two categories have attracted a great research attention. One is
the hypercube-like family that has the advantage of short diameters for high-
performance computing and efficient communication [5, 7–10]. The other is 2D/3D
mesh or torus that has the advantage of small and fixed node-degrees and easy
implementations. Traditionally, most MPPs in the history including those built
by NASA, CRAY, FGPS, IBM, etc., use 2D/3D mesh or torus or their varia-
tions with extra diagonal links. The recursive networks also have been proposed



as effective interconnection networks for parallel computers of large scale. For
example, the WK-recursive network [4, 13] is a class of recursive scalable net-
works. It offers a high-degree of regularity, scalability, and symmetry and has a
compact VLSI implementation.

Recently, due to the advance in computer technologies, the community of su-
percomputers rises competition to construct supercomputers of very-large scale
that might contain millions of nodes [11]. For example, the IBM new Blue Gene
system was proposed that will contain more than a million processors. It was
predicted that the MPPs of the next decade will contain 10 to 100 millions
of nodes [3]. For such a parallel computer of very-large scale, the traditional
interconnection networks may no longer satisfy the requirements for the high-
performance computing or efficient communication. For the future generation
of MPPs with millions of nodes, the node-degree and the diameter will be the
critical measures for the effectiveness of the interconnection networks. The node-
degree is limited by the hardware technologies and the diameter affects directly
all kind of communication schemes. Other important measures include bisection
bandwidth, scalability, and efficient routing algorithms.

In this paper, we propose a set of networks, called Recursive Dual-Net (RDN).
A recursive dual-net is based on the recursive dual-constructions of a regular
base-network. The dual-construction extends a regular network with n nodes and
node-degree d to a network with 2n2 nodes and node-degree d+1. The recursive
dual-net is especially suitable for the interconnection network of the parallel
computers with millions of nodes. It has the merits of regularity, scalability and
symmetry and can connect a huge number of nodes with just a small number
of links per node and very short diameters. For example, a 2-level RDN with
n = 25 can connect more than 3-million nodes that has only 6 links per node and
its diameter equals to 22. For parallel computers with millions of nodes, most
of the known topologies will either require a large number of links per node
(hypercube-like family) that is difficult to implement or have a large diameter
(3D torus or WK-recursive network) that affects tremendously its performance.

We investigate the topological properties of the recursive dual-net and show
some examples of recursive dual-net with rather simple base-networks. Then we
compare them with other networks such as 3D torus [1], WK-recursive network
[13], hypercube [10], CCC (cube-connected-cycle) [9], and dual-cube [7, 8]. We
also propose efficient basic routing algorithms for the recursive dual-net.

The rest of this paper is organized as follows. Section 2 describes the recursive
dual-net in details. Section 3 discusses the topological properties of the recursive
dual-net. Sections 4 compares recursive dual-net with other networks. Section 5
gives a few examples of recursive dual-net for parallel computers of large-scale
or very large-scale. Section 6 describes an efficient routing algorithm. Section 7
concludes the paper and presents some future research directions.



2 Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted as |G|, is the number of
vertices. A path from node s to node t in G is denoted by s→ t. The length of
the path is the number of edges in the path. For any two nodes s and t in G, we
denote D(s, t) as the length of a shortest path connecting s and t. The diameter
of G is defined as D(G) = max{D(s, t)|s, t ∈ G}. For any two nodes s and t in
G, if there is a path connecting s and t, we say G is a connected graph.

Suppose we have a symmetric connected graph B and there are n0 nodes
in B and the node degree is d0. A k-level Recursive Dual-Net RDNk(B), also
denoted as RDNk(B(n0)), can be recursively defined as follows:

1. RDN0(B) = B is a symmetric connected graph with n0 nodes, called base
network;

2. For k > 0, an RDNk(B) is constructed from RDNk−1(B) by a dual-
construction as explained below (also see Figure 1).

RDNk−1(B) RDNk(B)

type

0

type

1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Fig. 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as a cluster of level k and
nk−1 = |RDNk−1(B)| for k > 0. An RDNk(B) is a graph that contains 2nk−1

clusters of level k as subgraphs. These clusters are divided into two sets with
each set containing nk−1 clusters. Each cluster in one set is said to be of type
0, denoted as C0

i , where 0 ≤ i ≤ nk−1 − 1 is the cluster ID. Each cluster in the
other set is of type 1, denoted as C1

j , where 0 ≤ j ≤ nk−1 − 1 is the cluster ID.
At level k, each node in a cluster has a new link to a node in a distinct cluster
of the other type. We call this link cross-edge of level k. By following this rule,
for each pair of clusters C0

i and C1
j , there is a unique edge connecting a node



Fig. 2. A Recursive Dual-Net RDN1(B(3))

Fig. 3. A Recursive Dual-Net RDN2(B(3))

in C0
i and a node in C1

j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there are nk−1 nodes
within each cluster RDNk−1(B).

We give two simple examples of recursive dual-nets with k = 1 and 2, in which
the base network is a ring with 3 nodes, in Figure 2 and Figure 3, respectively.
Figure 2 depicts an RDN1(B(3)) network. There are 3 nodes in the base network.
Therefore, the number of nodes in RDN1(B(3)) is 2× 32, or 18. Figure 3 shows
the RDN2(B(3)) constructed from the RDN1(B(3)) in Figure 2. We did not
show all the nodes in the figure. The number of nodes in RDN2(B(3)) is 2×182,
or 648.

Similarly, we can construct an RDN3(B(3)) containing 2× 6482, or 839,808
nodes with node-degree of 5 and diameter of 22. In contrast, the 839,808-node
3D torus machine (adopt by IBM Blue Gene/L [1]) configured as 108× 108× 72
nodes, the diameter is equal to 54 + 54 + 36 = 144 with a node degree of 6.

3 Topological properties of RDN

We can see from the recursive dual-construction described above that an RDNk(B)
is a symmetric connected network with node-degree d0 +k, where d0 is the node-
degree of the base network B. The number of nodes nk in RDNk(B) satisfies the
recurrence nk = 2n2

k−1 for k > 0. Solving the recurrence, we get nk = (2n0)2k/2.
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Fig. 4. The diameter of the Recursive Dual-Net

Concerning the diameter Dk of RDNk(B), we know that the worst-case (the
longest one) for the shortest path P (u, v) connecting any two nodes u and v
in RDNk(B) is as follow: u and v are of the same type and path P = u →
u′ → w → w′ → v, where u → u′ and w → w′ are cross-edges of level k, and
|u′ → w| = |w′ → v| = Dk−1, as shown as in Figure 4. Therefore, the diameter
of RDNk(B) satisfies the recurrence Dk = 2Dk−1 + 2 for k > 0. Solving the
recurrence, we get Dk = 2kD0 + 2k+1 − 2, where D0 is the diameter of the base
network.

The bisection bandwidth is important for fault-tolerance. Next, we inves-
tigate the bisection bandwidth of the RDNk(B) for k ≥ 1. From the dual-
construction, we know that there is no link between the clusters of level k that
are of the same type. Therefore, the minimum number of links those removal
will disconnect two halves occurs when both halves contain equal numbers of
clusters of type 0 or 1. That is, the minimum number of links those removal will
disconnect two halves equals to half of the total number of cross-edges of level
k which is d(2n0)2k/8e.

Notice that if n0 is odd and k = 1 we should divide the RDN into two halves
such that one half contains bn0/2c (or dn0/2e) type 0 clusters and dn0/2e (or
bn0/2c) type 1 clusters. For example, the bisection bandwidth of RDN1(B(3))
is d62/8e = d9/2e = 5.

We summarize the discussion above about the fundamental properties of the
Recursive Dual-Net in the following theorem.

Theorem 1 Assume that the base network B is a symmetric graph with size
n0, node-degree d0, and the diameter D0. Then, the size, the node-degree, the
diameter and the bisection bandwidth of RDNk(B) are (2n0)2k/2, d0+k, 2kD0+
2k+1 − 2, and d(2n0)2k/8e, respectively.

4 Comparison to Other Interconnection Networks

An interconnection network is evaluated in terms of a number of parameters such
as node-degree, diameter, bisection width, average distance, regularity, symme-



try, etc. Let G be a regular, symmetric graph. There are trade-offs among the
node-degree, the diameter, and the size of a graph G. It is not easy and maybe
unfair to use a single parameter to compare the effectiveness of networks that
have different topologies and sizes. However, it should be worth to have such a
parameter that shows the combined effects of the topology on three important
measures: node-degree, diameter and size. There might be an argument that the
diameter is not an important issue if the system adopts the wormhole switching
technique. However, for the MPPs with millions of nodes, it seems not possible to
use wormhole switching technique since the whole system will occupy a big hall
and the connection must be done with cables. Therefore, for the interconnection
networks of MPPs, the diameter should play an important role for measuring
the ability of high-performance computing and efficient communication.

In this paper, we introduce cost ratio CR(G) as an important measure for
the combined effects of the hardware cost and the software efficiency of an in-
terconnection network presented as graph G. Let |(G)|, d(G), and D(G) be the
number of nodes, the node-degree, and the diameter of G, respectively. We define
CR(G) as

CR(G) = (d(G) +D(G))/ lg |(G)|

The motivation here is that the node-degree and diameter should not increase
faster than the logarithm of the size of of the graph. It should be considered as
a basic rule for high-performance MPPs. The design of interconnection network
should make effort to reduce the cost ratio, especially for an MPP with very large
scale. The cost ratio of hypercube is a constant 2 for any size. One of the reasons
that hypercube has been and will be still popular as an interconnection network
of MPPs is that its node-degree and diameter grow logarithmically with its size.
However, for an MPP with more than a million of nodes, the logarithmic growth
rate of the node-degree is still too big for the current hardware technologies (each
node requires more than 20 ports and channels)..

Other important measures for the performance of networks include the exis-
tence of simple and efficient routing and communication algorithms for certain
communication patterns such as multicast or total exchange. We present a sim-
ple and efficient routing algorithm on RDN. The design of efficient algorithms
for collective communication is beyond the scope of this paper. It should be an
interesting subjects for the further research.

Table 1 summarizes the number of nodes, the node-degree, the diameter, and
the cost ratio for 3D torus, hypercube, CCC, dual-cube, WK-recursive network
and recursive dual-net. The torus, also called wrap-around mesh or a toroidal
mesh, was adopt by IBM Blue Gene/L. This topology includes the p-ary, q-cube
which is a q-dimensional torus with the restriction that each dimension is of the
same size p. In a CCC(n), each node in an n-cube is replaced with an n-node
ring [9]. A dual-cube DC(n) contains 2n (n−1)-cubes called clusters [7]. Half of
the clusters are of type 0 and the other half are of type 1. There is a unique link
(cross-edge) connecting each pair of clusters of distinct types. DC(n) is equal to
RDN(2n−1, 1), where the base network is an (n− 1)-cube.



Table 1. CR of recursive dual-net and the other networks

Network Number of nodes Node-degree Diameter

p-ary, 3-cube p3 6 3p/2

n-cube 2n n n

CCC(n) n ∗ 2n 3 2n+ bn/2c − 2

DC(n) 22n−1 n 2n

WK(n, t) nt n 2t − 1

RDNk(B) nk = (2n0)2k/2 d0 + k 2k ∗D0 + 2k+1 − 2

Network CR

p-ary, 3-cube (6 + 3p/2)/3 lg p

n-cube 2

CCC(n) (2n+ bn/2c+ 1)/(n+ lg n)

DC(n) 3n/(2n− 1)

WK(n, t) (n+ 2t − 1)/ lgnt

RDNk(B) (d0 + k +Dk)/ lgnk

Fig. 5. A WK-recursive network WK(4, 2)

A WK-recursive network of level t denoted as WK(n, t) can be constructed
recursively as follows [13]. WK(n, 1) is an n-node complete graph augmented
with n open links each at a node. Each node of WK(n, t) is incident with n− 1
substituting links and one flipping link (or open link). The substituting links are
those within basic building blocks, and the j-flipping links are those connecting
two embedded WK(n, j). Figure 5 shows a WK-recursive network with n = 4
and t = 2.



5 Samples of RDN for Massively Parallel Computers

In this section, we describe some selections of base-networks such that the corre-
sponding recursive dual-net will be the candidate as an effective interconnection
network for MPPs of different sizes. A good choice for the base-network is p-ary,
q-cube. The p-ary, q-cube has many nice properties and is suitable as an inter-
connection network for parallel computers of small sizes. For example, a 5-ary,
2-cube or a 3-ary, 3-cube can be easily built into a 2D or 3D chip. The second
choice for the base-network is a WK-recursive network with n = 4 and t = 2
or 3. The nature of WK-recursive network makes it easily to be implemented
on a 2D chip. The selection of value k for recursive dual-net depends on the
sizes of the MPPs. For the MPPs of large-scale (thousands of nodes), k = 1 is a
good choice, while for the MPPs of very large-scale (millions of nodes), we can
set k = 2 that applies dual-construction twice. We list below a few examples
of the RDN as candidates of interconnection networks for MPPs based on the
discussion above.

1. MPPs of large-scale:
– RDN1(B(25)), where B(25) is a 5-ary, 2-cube: Since n0 = 25, d0 = 4,

and D0 = 4, this network has 1250 nodes. its node-degree, diameter and
cost ratio are 5, 10, and 1.46, respectively.

– RDN1(B(27)), where B(27) is a 3-ary, 3-cube: Since n0 = 27, d0 = 6,
and D0 = 3, this network has 1458 nodes. its node-degree, diameter and
cost ratio are 7, 8 and 1.43, respectively.

– RDN1(B(16)), where B(16) is a WK(4, 2): Since n0 = 16, d0 = 4, and
D0 = 3, this network has 512 nodes. its node-degree, diameter and cost
ratio are 5, 8 and 1.44, respectively.

2. MPPs of very large-scale:
– RDN2(B(25)), whereB(25) is a 5-ary, 2-cube: This network has 3,125,000

nodes. its node-degree, diameter and cost ratio are 6, 22 and 1.30, re-
spectively.

– RDN2(B(27)), whereB(27) is a 3-ary, 3-cube: This network has 4,251,528
nodes. its node-degree, diameter and cost ratio are 8, 18 and 1.18, re-
spectively.

– RDN2(B(16)), where B(16) is a WK(4, 2): This network has 524,288
nodes. its node-degree, diameter and cost ratio are 6, 18 and 1.26, re-
spectively.

We show the comparisons of the RDN and other networks for MPPs of large-
scale and very large-scale in Table 2 and Table 3, respectively. It can be seen
from the tables that the RDN with properly selected base-networks are superior
to other networks.

Finally, concerning the physical layout of an MPP with recursive dual-net,
it can be described briefly as follows. The base-network that is a 5-ary, 2-cube,
or a 3-ary, 3-cube, or an WK(4, 2) can be built on a 2D or 3D chip. The MPP
of large-scale that contains clusters of level 1 can be packed into a dual-rack



Table 2. CR for MPPs of large-scale

Network n d D CR

10-ary 3-cube 1,000 6 15 2.11

10-cube 1,024 10 10 2.00

CCC(8) 2,048 3 18 1.91

WK(8, 3) 512 8 7 1.67

DC(6) 2,048 6 12 1.64

RDN1(B(25)) 1,250 5 10 1.46

RDN1(B(27)) 1,458 7 8 1.43

RDN1(B(16)) 512 5 8 1.44

Table 3. CR for MPPs of very large-scale

Network n d D CR

100-ary 3-cube 1,000,000 6 150 7.83

20-cube 1,048,576 20 20 2.00

CCC(16) 1,048,576 3 38 2.05

WK(8, 7) 2,097,152 8 127 6.43

DC(11) 2,097,152 11 22 1.57

RDN2(B(25)) 3,125,000 6 22 1.30

RDN2(B(27)) 4,251,528 8 18 1.18

RDN2(B(16)) 524,288 6 18 1.26

that connects to sets of clusters face-to-face. The MPP of very large-scale can
be built and displayed in a big hall with dual-racks connected through cables.
With the advance of technologies, the above configuration of an MPP with the
recursive dual-net might become a reality.

6 An Efficient Routing Algorithm in RDN

The problem of finding a path from a source s to a destination t and forwarding
a message along the path is known as the basic routing problem. In this section,
we present efficient algorithms for the basic routing in RDN.

In order to describe the routing algorithm, we first give a presentation for
RDNk(B) that provides an unique ID to each node in RDNk(B). Let the IDs
of nodes in B, denoted as ID0, be i, 0 ≤ i ≤ n0 − 1. The IDk of node u in
RDNk(B) for k > 0 is a triple (u0, u1, u2), where u0 is a 0 or 1, u1 and u2

belong to IDk−1. We call u0, u1, and u2 typeID, clusterID, and nodeID of u,
respectively.

More specifically, IDi, 1 ≤ i ≤ k, can be defined recursively as follows:
IDi = (b, IDi−1, IDi−1), where b = 0 or 1. The ID of a node u in RDNk(B)



can also be presented by an unique integer i, 0 ≤ i ≤ (2n0)2k/2− 1, where i is
the lexicographical order of the triple (u0, u1, u2). For example, the ID of node
(1, 1, 2) in RDN1(B) is 1 ∗ 32 + 1 ∗ 3 + 2 = 14. It can be verified easily that the
definition is consistent with the definition of the recursive dual-net in Section 2.

With this ID presentation, (u, v) is a cross-edge of level k in RDNk(B) iff
u0 6= v0, u1 = v2, and u2 = v1.

Assume that a routing algorithm for the base network B is available. The
proposed routing algorithm that routes node u to node v in RDNk(B) for k > 0
is a recursive one. If u and v are in the same cluster of level k then just call itself
for k − 1. Otherwise, we assume that u and v has distinct typeID (for the case
u0 = v0, we simply route u to w via a cross-edge of level k then we treat w as
u). We route u to u′ with u′2 = v1 and v to v′ with v′2 = u1 inside the clusters of
level k where u and v belong to. This can be done by recursive calls for k − 1.
Then we can route u′ to v′ in 1 hop since there is a cross-edge of level k from u′

to v′. The proposed routing algorithm is described formally as Algorithm 1.

Algorithm 1: RDN routing(RDNk(B), u, v)
begin

if k = 0 then RDN routing(RDN(m, 0), u, v)
else

Case 1:u0 = v0 and u1 = v1

RDN routing(RDNk−1
u0,u1(B), u2, v2);

/* RDNk−1
u0,u1(B) is the cluster with typeID = u0

and clusterID = u1. */
Case 2: u0 6= v0

RDN routing(RDNk−1
u0,u1(B), u2, v1);

u′ = (u0, u1, v1);
RDN routing(RDNk−1

v0,v1(B), v2, u1);
v′ = (v0, v1, u1);
connect u′ and v′ via a cross-edge of level k;

Case 3: u0 = v0 and u1 6= v1

route u to w via the cross-edge of level k;
route node w to node v as in Case 2;

endif
end

Example (also see Fig. 6):
k = 2 :

u = (u0, u1, u2) = (0, (0, 0, 0), (0, 0, 0))
v = (v0, v1, v2) = (1, (1, 2, 2), (0, 2, 2))
u0 = 0, u1 = (0, 0, 0), u2 = (0, 0, 0)
v0 = 1, v1 = (1, 2, 2), v2 = (0, 2, 2)
u0 6= v0 (Case 2, cross-edge):
u′ = (u0, u1, v1) = (0, (0, 0, 0), (1, 2, 2))



(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

(0, (0, 0, 0), *)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

(0, (1, 2, 2), *)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

(1, (0, 0, 0), *) (1, (1, 2, 2), *)

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

Fig. 6. Routing in RDN2(B)

v′ = (v0, v1, u1) = (1, (1, 2, 2), (0, 0, 0))
u2 = (0, 0, 0)→ v1 = (1, 2, 2), see k = 1 (1)
v2 = (0, 2, 2)→ u1 = (0, 0, 0), see k = 1 (2)

k = 1 (1): in cluster (0, (0, 0, 0), ∗)
u = (u0, u1, u2) = (0, 0, 0)
v = (v0, v1, v2) = (1, 2, 2)
u0 = 0, u1 = 0, u2 = 0
v0 = 1, v1 = 2, v2 = 2
u0 6= v0 (Case 2, cross-edge):
u′ = (u0, u1, v1) = (0, 0, 2)
v′ = (v0, v1, u1) = (1, 2, 0)
u2 = 0→ v1 = 2, (Case 1, k = 0)
v2 = 2→ u1 = 0, (Case 1, k = 0)

k = 1 (2): in cluster (1, (1, 2, 2), ∗)
u = (u0, u1, u2) = (0, 2, 2)
v = (v0, v1, v2) = (0, 0, 0)
u0 = 0, u1 = 2, u2 = 2
v0 = 0, v1 = 0, v2 = 0
u0 = v0 and u1 6= v1 (Case 3)
w = (w0, w1, w2) = (1, 2, 2)
Let u = w, then do similarly in k = 1 (1).



Theorem 2 In RDNk(B), routing from source s to destination t can be done
in at most 2k ∗D0 +2k+1−2 steps, where D0 is the diameter of the base network.

Proof: The correctness of the algorithm 1 can be proved easily by induction on k.
The worst-case for the length of the routing path is Case 3. In Case 3, the length
of routing path d(u, v) satisfies the inequality d(u, v) ≤ d(w,w′) + d(v, v′) + 2
for k > 0, where d(w,w′) ≤ Dk−1 and d(v, v′) ≤ Dk−1. Therefore, we have
d(u, v) ≤ 2k ∗D0 + 2k+1 − 2, where D0 is the diameter for the base network. o

7 Conclusion

In this paper, we described a universal network, recursive dual-net, that can be
used as an effective interconnection network of an MPP with very large scale
(having millions of nodes). If the base-network is properly selected, the recursive
dual-net has many attractive properties including small and flexible node-degree,
short diameter, recursive structure, and efficient routing algorithms. We studied
the topological properties of the recursive dual-net. We also described an efficient
routing algorithm in RDNk(B) for k > 0. To design efficient algorithms for
collective communications, parallel prefix computation, sorting, and numerical
computations in recursive dual-net are certainly worth of the further research.
The other direction of the future work includes the study of architectural aspects
of the proposed network.
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