
A Distributed Algorithm for Finding a Tree Trunk and Its Application for
Multicast in Mobile Ad Hoc Networks

Yamin Li, Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin;speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract

Overlay multicast protocol constructs a virtual mesh
spanning all member nodes of a multicast group and em-
ploys standard unicast routing to fulfill multicast function-
ality on application layer. The advantages of this approach
are simplicity and flexibility. However, efficiency and sta-
bility are the issues that must be addressed as the size of
the multicast group grows in the mobile ad hoc networks
(MANETs). In this paper, we propose tree trunk for over-
lay multicast to solve these problems in MANETs. A tree
trunk is a path that minimizes the sum of the distances of
all vertices to the path plus the length of the path. We give
an efficient distributed algorithm for finding a tree trunk in
a tree network. We also perform some empirical analysis
based on the tree trunk and compare the results with those
using spanning tree.

Key words: Mobile ad hoc networks, multicast, overlay
mesh, efficiency, stability, distributed algorithm.

1 Introduction

Mobile ad hoc networks (MANETs) refer to a form of
infrastructureless networks connecting mobile devices with
wireless communication capacity. Each node in MANETs
behaves as a router as well as an end host, so that the con-
nection between any two nodes is a multi-hop path sup-
ported by other nodes. In MANETs, the multicast support
is critical since the close cooperation among team members
is required for many MANET applications.

Multicasting in MANETs faces many challenges due to
the continuous changes in network topology (mobility) and
limited channel bandwidth. Many multicast routing proto-
cols have been proposed for MANETs [1, 9, 3, 5, 11, 15,
16, 17, 4]. A review paper was given by Cordeiro et al.
[2]. For multicast protocols, robustness and overhead are
key issues since the protocols maintain state information at

all nodes involved — both member nodes and non-member
nodes that act as routers for supporting the multicast ses-
sion.

Most multicast research for ad hoc networks has focused
on IP layer multicast protocols. Such protocols require the
cooperation of all the nodes of the network. Application
layer multicasting (overlay multicasting) is an alternative
approach to IP layer multicasting. The overlay multicast has
the following advantages: First, it does not require changes
at the network layer; second, routing complications are hid-
den; and third, intermediate nodes do not have to maintain
per group state for each multicast group. However, the use
of application layer multicast can result in the transmission
of multiple copies of multicast messages over each physical
link. This effect is especially visible when there are a large
number of multicast group members.

In the overlay multicast approach for MANETs, a virtual
infrastructure is built to form an overlay network on top of
the physical network. Each link in the virtual topology is
a unicast path in the physical network. The overlay net-
work implements multicast functionalities such as dynamic
membership maintenance, packet duplication and multicast
routing. AMRoute [4] is an ad hoc multicast protocol that
uses the overlay multicast approach. The protocol does not
need to track the network mobility since it is handled by
the underlying unicast protocols. Thus, it can operate seam-
lessly on multiple domains that use different unicast routing
protocols [11].

To handle the efficiency issue in overlay multicast ap-
proach, minimum cost spanning tree on the virtual mesh is
built. The minimum cost spanning tree problem is to find
a subgraph that connects all vertices such that the sum of
the costs of the edges in the subgraph is minimum. The cost
of constructing and maintaining the tree depends very much
on the size of the tree. For this reason, the overlay multicast
approach works well for small groups but the performance
degrades rapidly when the group size grows. Instead of us-

ing spanning tree of the virtual mesh, we propose a specific
path, called tree trunk, for the overlay multicast on the vir-
tual mesh. A tree trunk is a path that minimizes the sum of
the distances of all vertices to the path plus the length of the
path. The tree trunk significantly reduces the cost for the
maintenance and provides higher stability under the mobile
environment.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the previous work on overlay multicast in
MANETs. Section 3 presents the theoretical background
for tree trunk. An efficient distributed algorithm for finding
a tree trunk is given in Section 4. Section 5 gives simula-
tion results on the performance of multicasting using tree
trunk and compares these results to those of the AMRoute.
Section 6 concludes this paper.

2 Preliminaries and Previous Work

We consider an ad hoc network as a graph G = (V,E),
where V is a set of nodes and E is a set of bidirectional
links. In an overlay multicast approach, a virtual mesh con-
necting all group members is built first. Each member node
starts a neighbor discovery process using the expanded ring
search technique. The maximum degree of the virtual topol-
ogy is controlled. Each member node keeps track of other
members in its vicinity. This is done by a query to its route
table maintained by unicast protocol, or by a periodic neigh-
bor discovery operation. Each member node also maintains
the topology map of the virtual mesh. This is done by the
link state exchange technique. At each node, the topology
map is represented as a link state table. Through the link
table, each node has a local view of the whole virtual topol-
ogy. After the virtual mesh is built, multicast tree is set up
on the virtual mesh for efficient multicasting.

There are two kinds of approaches for tree-based multi-
cast: shared tree and source-based tree. The source-based
tree approach is more efficient for data delivery. However,
since each node constructs its own tree the cost is higher.
We review three overlay multicast protocols that are pre-
sented in the literature, namely, AMRoute [4], PAST-DM
[9], and ALMA [8].

AMRoute is an ad hoc multicast protocol that uses the
overlay mesh and a shared user-multicast tree for robust
IP multicast in mobile ad hoc networks. Bidirectional uni-
cast tunnels are used to connect the multicast group mem-
bers into a virtual mesh. After the mesh creation phase,
a shared tree for data delivery is created and maintained
within the mesh. One member node is designated as the log-
ical core which is responsible for initiating the tree creation
process periodically. The core node is not a preset node and
changes dynamically according to the core-resolution algo-
rithm. The tree constructed in AMRoute is not necessary to
be the minimum cost tree.

In PAST-DM protocol, each source constructs its own
data delivery tree based on its local link state table. A novel
source-based Steiner tree algorithm is used to minimize the
total cost of multicast tree. The tree is then periodically re-
freshed. During the construction process, the source makes
all its logical neighbors its first-level children in the mul-
ticast tree and divides the remaining members into sub-
groups. Each of these sub-groups forms a subtree rooted
at one of the first-level children. Each of the source’s first-
level children then repeats the source-based Steiner tree al-
gorithm to establish their own subtrees and forwards the
message to the subtree.

In ALMA protocol, an overlay multicast tree of logical
links between the group members is constructed to tackle
the efficiency problem in MANETs. The virtual topol-
ogy gradually adapts to the changes in underlying network
topology. A source-based Steiner tree algorithm was pro-
posed for constructing the multicast tree. The multicast tree
is progressively adjusted according to the latest local topol-
ogy information. Its advantages are: receiver-driven, flexi-
ble, and adaptive. From their simulations, ALMA performs
significantly better for small group sizes.

3 Tree Trunk for Overlay Multicast

As mentioned in Section 1, overlay multicasting protocol
is an application layer protocol that constructs an overlay
multicast tree of logical links among the group members.
For small group this approach works well. However, as the
size of the group grows, the maintenance cost of the multi-
casting tree will become higher and the stability of the tree
will become worse due to the node mobility. Instead of us-
ing a spanning tree, our new approach uses a very simple
linear structure, called tree trunk, for multicasting on the
virtual mesh. This approach is beneficial when the multi-
cast group is not small.

A core of a tree is a path that minimizes the sum of the
distances of all vertices to the path. A linear sequential al-
gorithm for finding a core of a tree was given by Morgan
and Slater [14]. Peng et al. developed a parallel algorithm
for finding a core of a tree [6, 7]. A core of a tree does not
count the distances between the nodes on the path. How-
ever, for multicast on mobile ad hoc networks, the length of
the path should be included in the optimization criteria. Li,
Peng, and Chu proposed distributed algorithms [12, 13] for
multicasting in mobile ad hoc networks, but the algorithms
do not guarantee to generate a tree trunk.

3.1 Definition of tree trunk

A tree trunk is a path that minimizes the sum of distance
of all vertices to the path plus the length of the path. Let
G be an edge-weighted graph with vertex set V (G). Each
edge e = (u, v) has a weight w(e), or w(u, v), where nodes

u and v are neighbors connected by edge e. Let G′ be a
connected subgraph of G, we define the inner cost w(G′)
and outer cost δ(G′) as

w(G′) =
∑

e∈G′
w(e) (1)

δ(G′) =
∑

u∈V (G)

d(u,G′) (2)

where d(u,G′) = min{d(u, v)|v ∈ V (G′)} and d(u, v) is
the distance between nodes u and v. Our goal is to minimize
w(G′) + δ(G′). Notice that if G′ is a spanning tree of G,
δ(G′) = 0 and ifG′ = {u}, stateless broadcast for instance,
w(G′) = 0.

Let T be an edge-weighted tree with vertex set V (T) and
P (s, t) be a path in T with two end nodes s and t. A path
P (s, t) is a tree trunk ifw(P (s, t))+δ(P (s, t)) is minimum
for any s, t ∈ V (T). The cost of a path P (s, t) is defined as
w(P (s, t)) + δ(P (s, t)).

Because the number of nodes in a tree trunk is much less
than the number of nodes in the corresponding tree, espe-
cially when the tree size is large, the maintenance of a tree
trunk is easer than that of the tree. Sending message to a
node that is not on the trunk is done with unicast, therefore,
there is no affect on the topology when a non-trunk node
quits from the group membership. This means that the tree
trunk is more stable that the tree.

3.2 Theoretical background for finding a
tree trunk

For efficiently constructing a trunk, we orient tree T into
a rooted tree Tr with root r. A root r is arbitrarily selected.
After the tree trunk is constructed, r becomes an ordinary
member node. Selecting a different root r does not affect
the final tree trunk. Any distributed selection algorithm can
be used for selecting the root r and the root r has much less
job than the logical core in AMRoute.

For any vertex v ∈ Tr, we denote the parent of v as p(v),
the subtree rooted at v as Tv , and the number of vertices
in Tv as |Tv|. Let a rooted trunk P (r, l0) be a path from
root r to leaf l0 which minimizes δ(P (r, l)) + w(P (r, l))
among all paths from r to leaf l in Tr. We show that the
problem of constructing a trunk in T can be reduced to the
problem of constructing a rooted trunk in a rooted tree Tr.
The following lemmas form the theoretical background for
the reduction.

Lemma 1 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then P (r, l0)∩ P (l1, l2) 6= ∅
for any trunk P (l1, l2) in T .
Proof: Assume that P (r, l0) ∩ P (l1, l2) = ∅ for a trunk
P (l1, l2). Let i be the closest vertex in P (r, l0) to P (l1, l2)
and j the closest vertex in P (l1, l2) to P (r, l0) (see Fig-
ure 1). Let path C = P (l0, i) ∪ P (i, j) ∪ P (j, l2). Since

r l1

i j

l0 l2

Figure 1. P (r, l0) is a rooted trunk in Tr and
P (l1, l2) is a trunk

P (r, l0) is a rooted trunk, δ(P (l0, i)) + w(P (l0, i))) ≤
δ(P (l1, i)) + w(P (l1, i)). Since i is not a leaf, we have
δ(P (l1, i)) + w(P (l1, i)) < δ((P (l1, j)) + w(P (l1, j)).
Similar, we have δ(P (l0, j))+w(P (l0, j)) < δ((P (l0, i))+
w(P (l0, i)). From these equations, we get δ(P (l0, j)) +
w(P (l0, j)) < δ((P (l1, j)) + w(P (l1, j)). This implies
δ(C)+w(C) < δ(P (l1, l2))+w(P (l1, l2)), a contradiction
to the fact that P (l1, l2)) is a trunk. Therefore, the lemma
must be true. o

Theorem 1 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then a rooted trunk in rooted
tree Tl0 , a new orientation of T , is a trunk in T .

Proof: Let P (l0, l′0) be a rooted trunk in Tl0 . As-
sume that P (l1, l2) is a trunk in T . From Lemma 1,
P (l0, l′0) ∩ P (l1, l2) 6= ∅. Let P (i, j) = P (l0, l′0) ∩
P (l1, l2), where i is the vertex in P (i, j) closest to
vertices l0 and l1 (see figure 2). Since P (r, l0) is
a rooted trunk, we have δ(P (l0, i)) + w(P (l0, i)) ≤
δ(P (l1, i)) + w(P (l1, i)). Similarly, Since P (l0, l′0) is
a rooted trunk, we have δ(P (l′0, j)) + w(P (l′0, j)) ≤
δ(P (l2, j))+w(P (l2, j)). Therefore, we get δ(P (l0, l′0))+
w(P (l0, l′0)) ≤ δ(P (l1, l2)) + w(P (l1, l2)). We conclude
that P (l0, l′0) is a trunk in T . o

l′0

l0 l1

i

r
j

l2

Figure 2. P (i, j) = P (l0, l′0)∩ P (l1, l2)

From Theorem 1, the problem of constructing a trunk in
T can be solved as follows:

1. Orient tree T into a rooted tree Tr with an arbitrary
vertex r;

2. Construct a rooted trunk P (r, l0) in Tr;
3. Re-orient T into Tl0 ;
4. Construct a rooted trunk in Tl0 .

(a) T (b) Tr

(c) Tl0

31

26

r

r

l0

r

l0

l′0

Figure 3. (a) An example tree; (b) a rooted
trunk in Tr; (c) a rooted trunk in Tl0 which
is a trunk in T

In Figure 3, we first show an example tree T with an arbi-
trarily selected vertex r in Figure 3(a). Then, in Figure 3(b),
we show the rooted tree Tr and a rooted trunk P (r, l0) in Tr.
We have δ(P (r, l0)) +w(P (r, l0)) = 26 + 5 = 31. Finally
in Figure 3(c), we show the rooted tree Tl0 and a rooted
trunk P (l′0, l0) in Tl0 . The path P (l0, l′0) is a trunk in T ,
and we have δ(P (l0, l′0)) + w(P (l0, l′0)) = 19 + 7 = 26.

4 A Distributed Algorithm for Tree Orienta-
tion and Finding a Rooted Trunk

We propose a distributed algorithm for tree orientation
and finding a rooted trunk of a tree T with a given root node
r in this section. The algorithm is based on branch-cut oper-
ation. The branch-cut operation works inward from leaves
(6= r). The branch-cut operation first identifies candidates.
A node u 6= r is a candidate if the following conditions are
satisfied: (1) u is a nonleaf node; (2) if r 6∈ N(u) (the set of
neighbor nodes of u), node u has exactly one nonleaf neigh-
bor, otherwise, all nodes inN(u)−{r} are leaves. The root
r is a candidate if all its neighbors are leaves. If u becomes a
candidate then branch-cut is performed on u; the neighbors
of u that are leaves are cut-off from the tree and u becomes
a leaf (for tree orientation, we set all edges connecting u and
its leaf neighbors the direction toward u). The branch B(u)
is a subtree in T that includes all edges oriented toward u
or its descendants through branch-cut. Figure 4 depicts a
tree Tr that contains a candidate u. Notice that w is not a
candidate although it has only one nonleaf neighbor v.

Through branch-cut operation, the rooted trunk of the
branch B(u) with root u (called local trunk) is calculated

Candidate
B(u)

x

z

u vy w

r

s

Figure 4. Candidates in tree Tr

and saved in u. Since all candidates that are not root r cal-
culate the disjoint local trunks for different branches at the
same time, the algorithm inherits natural parallelism. In a
distributed environment, global clock and global informa-
tion are not available, so branch-cut operation should be
done asynchronously, and based on the local information
only.

To find the rooted trunk based on branch-cut, if we use
the formula w(P) + δ(P) directly, δ(l), for all leaves l of
tree T , should be calculated first. However, calculating the
value of δ(l) requires global information. To overcome this
problem, we define cost saving that needs local information
only. The cost saving of a path from a leaf l to node v,
denoted as Cs(P (l, v)), is defined as follows:

Cs(P (l, v)) = δ(v)− δ(P (l, v))− w(P (l, v)) (3)

Now, from the definition of rooted trunk, to find a rooted
trunk in branch B(u) equals to find a path P (l, u) in B(u)
such that Cs(P (l, u)) is maximized. It is the key in the de-
sign of distributed algorithm for finding rooted trunk based
on branch-cut that Cs(P (l, u)) in any branch B(u) can be
computed using local information only. The formula for
computing cost saving while extending path from v to u is

Cs(P (l, u)) = Cs(P (l, v)) + (|B(u)| − 1)×w(u, v) (4)

where v is a child of u and v ∈ P (l, u)).
The cost saving of a local rooted trunk in B(u), denoted

as Cs(u) is defined as

Cs(u) = max
l∈B(u)

Cs(P (l, u)) (5)

We give an example to demonstrate how the cost sav-
ing are calculated through branch-cut. As shown in Fig-
ure 5, given tree T and root r, four nodes a, b, c, and d are
identified as candidates. We perform branch-cut and these
four nodes become leaves with Cs(a) = Cs(b) = Cs(c) =
Cs(d) = 0. Next, nodes e, g, and f are identified as candi-
dates. We perform branch-cut and calculate the cost savings
Cs(e) = 0 + (4 − 1) × 1 = 3, and Cs(f) = Cs(g) = 2 in
parallel by using Equation 4. Finally, since all three neigh-
bors of node r are leaves, we perform branch-cut at r and

0

0

0

0

0

3

2

0

0

0

0

0

2

0

0

0

a

b

c

d

e

f

g

r
x

t

m

q

s

y

z

n p

8

Figure 5. Calculation of cost saving during
branch-cut

Algorithm 1: Find Rooted Trunk
Input: A weighted tree T and a root r
Output: A rooted trunk Pr,l of T with root r
begin
u = my node id;
u.size = 1;
u.saving = 0;
u.path = {u};
n = degree(u);
L = N(u); /* N(u) is the set of neighbor nodes of u */
if (n = 1) and (u 6= r) /* a leaf */

send Message(u.size, u.saving, u.path) to v ∈ L;
set direction of (u, v) as u→ v;
exit();

else
while (true)

receive Message (v.size, v.saving, v.path) from v ∈ L;
n = n− 1;
L = L− {v};
u.size = u.size+ v.size;
if (u.saving < v.saving + (v.size− 1)× w((u, v)))
u.saving = v.saving + (v.size− 1)× w((u, v));
u.path = v.path ∪ (u, v);

endif
if (n = 1) and (u 6= r) /* branch-cut */

send Message(u.size, u.saving, u.path) to v ∈ L;
exit();

endif /* my node id finish */
if (n = 0) /* u is root */

return u.path;
exit(); /* Rooted trunk found */

endif
endwhile

endif
end

calculate three cost saving from three branches. They are
Cs(P (x, r)) = 8, Cs(P (s, r)) = 5, and Cs(P (q, r)) = 8,
respectively. Therefore Cs(r) = 8 and either P (x, r) or
P (q, r) can be selected as rooted trunk.

In our algorithm, we use the local information to com-
pute the following three variables in each node u:

1. The number of nodes in B(u), denoted as u.size.
2. The cost saving Cs(u), denoted as u.saving.
3. The local rooted trunk in B(u), denoted as u.path

(Cs(u.path) = Cs(u)).

The proposed distributed algorithm for finding a rooted
trunk in a weighted tree is formally presented in Algorithm
1. The algorithm uses only local information and works
asynchronously. We show in theorem 2 that algorithm 1
finds the tree orientation and a rooted trunk correctly.

Theorem 2 Algorithm 1 returns an orientation of T with
root r and a rooted trunk in Tr.

Proof: From the initial values assigned to leaves and the
iteratively extending formula 4, it can be verified easily that
the u.saving = Cs(u). Next, When node u 6= r becomes
a leaf (|L| = n = 1), it sends a message to the only node v
left in L that is either a nonleaf node or the root and exits.
Therefore, the message from u to v is sent only once and no
message will be sent from v to u (or the direction of edge
(u, v) is set from u to v one and only once). That is, there
is no conflict during asynchronous communication. Since
the message is sent from u (u is cut-off) only if u 6= r,
root r will receive message from its neighbor only and the
edges are oriented from its neighbors toward r. Therefore,
root r must be the last node remained during the branch-cut
process. When the neighbor list L of node r becomes empty
(n = 0), the orientation of T is done and the rooted trunk
of Tr is also found. o

Next, we shows in Theorem 3 that finding a tree trunk
can be done efficiently in a distributed environment using
local information only.

Theorem 3 Given a weighted tree T , there exists a dis-
tributed algorithm that finds a tree trunk in T in O(d) time,
where d is the diameter of T . Assume that the degree of
node v ∈ T , deg(v) = O(1).
Proof: To find a tree trunk of T , we perform algorithm 1
twice: first with a randomly selected root r, and second with
root l, where Pr,l is the rooted trunk of T with root r. From
the theorems 1 and 2, we conclude that the rooted trunk Pl,l′
of T with root l is a tree trunk of T . o

Figure 6 shows an example of mobile ad hoc networks.
There are 160 mobile nodes randomly locating within a
2000m × 1500m area. The radio transmission range is 250
meters. The multicast group size is 80. The solid cycles rep-
resent the group members. The maximum d-hop distance is
2. The tree is marked with thicker lines and the tree trunk is
marked with thickest lines.

The proposed algorithm is designed to operate in a dis-
tributed fashion in a mobile environment. The network
topology may change due to host mobility or adds/drops
of group membership. With the spanning tree topology, ev-
ery group member’s mobility or quit from the group may

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

10

11

12

13

14
15

16

17

18

19
1a

1b

1c

1d

1e

1f

20

21

22

23 24

25

26

27

28

29

2a

2b

2c

2d

2e

2f

30

31

32

33

34

35

36

37

38

39
3a

3b

3c

3d
3e

3f
40

41

42

43

44

45

46

47

48

49

4a

4b

4c

4d

4e

4f

50

51

52

53

54 55

56

57

58

59

5a

5b

5c

5d

5e

5f

60

61

62

63

64

65

66
67

68

69

6a

6b
6c

6d

6e

6f

70 71

72

73

74

75

76

77

78

79

7a

7b

7c

7d

7e

7f

80

81

82

83

84

85

86

87

88

89

8a

8b8c

8d

8e

8f

90

91

92

93

94

95

96

97

9899

9a

9b

9c

9d

9e

9f

Figure 6. An example of tree trunk

affect the connectedness of the network, but with the tree
trunk topology, the mobility or quit of a member that is not
a node of the tree trunk does not affect the connectedness
of the network. We will demonstrate the benefit of using a
tree trunk for multicast in the mobile ad hoc networks in the
next section.

5 Performance Analysis and Simulations

The network for the performance simulation is config-
ured as below. There are 200 nodes randomly roaming
within a 2000m × 1500m area. The radio transmission
range of each node is set to be 250m, 350m, and 450m.
The group size is chosen to be 10 to 100, stepped by 10.
Each configuration runs 100 trials.

Figure 7 shows the average hop distances for construct-
ing the overlay mesh. Increasing the radio transmission
range will decrease the hop distance at the cost of increased
power consumption.

1
1.5

2
2.5

3
3.5

4
4.5

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

D
-h

op

Group size

r250m
r350m
r450m

Figure 7. Average D-Hop

Figure 8 shows the size of the trunk, i.e., the number of
member nodes that form the trunk. This size is relatively

2

6

10

14

18

22

26

10 20 30 40 50 60 70 80 90 100

Tr
un

k
si

ze

Group size

r250m
r350m
r450m

Figure 8. Core size

small compared to the group size. Also, when the group
size is large, say 50, adding new members to the group will
not affect the size of trunk obviously.

The trunk maintains fewer nodes that re-send the re-
ceived message than AMRoute for multicast. Of course,
the message delivery cost of the trunk is higher than that of
AMRoute. But, from Figure 9, we can see that the increased
cost is quite small. The message delivery cost here is sim-
ply defined as the sum of physical hop length of virtual links
of AMRoute or the trunk when a message is multicasted to
all the group members. The figure also shows the cost for
stateless transformation in which the message is sent to ev-
ery member individually by unicast routing.

50
100
150
200
250
300
350
400
450

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

co
st

Group size

Stateless-r250m
Trunk-r250m

AMRoute-r250m

Figure 9. Average cost

The virtual trunk remains static even though the under-
lying physical topology is changing. We investigated the
mobility effect on the cost. The movement of each node
follows the random waypoint model [10]: Each node se-
lects a destination location randomly and moves straight to-
ward the destination with a constant speed which is uni-
formly distributed over [0,20] meters/second. After arrival,

50

100

150

200

250

300

0 100 200 300 400 500

A
ve

ra
ge

co
st

s

Elapsed time (second)

Trunk-m100
AMRoute-m100

Trunk-m50
AMRoute-m50

Figure 10. Average cost

the node pauses for 10 second and then moves to another
location, and so on.

Figure 10 shows the time-line of the average costs of
AMRoute and the trunk for multicast group sizes 50 and
100. As shown in the figure, the costs increase as the mobile
nodes move; the costs for AMRoute and the trunk are al-
most the same as the time elapses. Figure 11 shows the rel-
ative increased costs which are obtained by dividing cost(t),
the cost at the time t, by cost(0). As the time elapses, the
relative increased cost of the trunk is less than that of AM-
Route.

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500

R
el

at
iv

el
y

in
cr

ea
se

d
co

st

Elapsed time (second)

AMRoure-m50
Trunk-m50

Figure 11. Relatively increased cost

For tree topology, if a leaf node quits from the group,
there is no effect on the connectedness of the tree; if it
is a nonleaf node, the original tree is partitioned into two
or more subtrees. Similarly, if the quited node is a trunk
node, the trunk topology may lose the virtual connection.
Figure 12 shows the delivery ratio when mobile nodes quit
from the multicast group. The delivery ratio is obtained as
below.

We simulated 100 trials for a fixed number of quit nodes.

0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

D
el

iv
er

y
ra

tio

Number of group members to leave

Trunk-r350-m100
AMRoute-r350-m100

Figure 12. Delivery ratio

The quit nodes are randomly chosen among the multicast
group members. For each trial, a randomly chosen node
broadcasts a message. Because the trunk and the virtual tree
in AMRoute may be partitioned due to the node quits, the
message may not reach to the all other nodes. The relative
delivery ratio is calculated by dividing the number of nodes
that received the message by the group size. As shown in
the figure, the delivery ratio of the trunk is better than that
of AMRoute.

This also means that as the node quits, the probability of
the connectedness of the trunk is higher than that of AM-
Route. In a practical implementation, when disconnected,
AMRoute and the trunk must be reconstructed. From Fig-
ure 12, we conclude that trunks are more stable than AM-
Route.

6 Concluding Remarks

A new infrastructure based on trunk for overlay multi-
casting on mobile ad hoc network was proposed, an efficient
distributed algorithm for finding a trunk was developed, and
the performance was evaluated through simulations. Our
future work includes theoretical study and finding alterna-
tive infrastructures for multicasting on mobile ad hoc net-
works.

The following comes from the reviewer comments: “As
far as a mobile ad hoc network-based application is con-
cerned, the withstanding or resilience to network merging
and partitioning is generally required. A network partition-
ing splits the communication environment into two or more
disjoint parts, a common occurrence in wireless networks
containing mobile nodes. On the contrary, network merg-
ing will cause issues on changes in coalition membership or
on reconciling the effects of partitioned multicast commu-
nication. Such related issues require further investigation in
the future.”

References

[1] K. Chen and K. Nahrstedt. Effective location-guided tree
construction algorithm for small group multicast in manet.
In Proc. of IEEE INFOCOM’02, June 2002.

[2] C. Cordeiro et al. Multicast over wireless mobile ad hoc net-
works: present and future directions. IEEE Network, 17(1),
Jan. 2003.

[3] D. Janotti et al. Overcast: reliable multicasting with an over-
lay network. In Proc. of the 4th Symposium on Operating
System Design and Implementation, Oct. 2000.

[4] J. Xie et al. Amroute: ad hoc multicast routing protocol.
ACM Mobile Networks and Applications, 7(6), Dec. 2002.

[5] S. J. Lee et al. On-demand multicast routing protocol in
multihop wireless mobile networks. ACM Mobile Networks
and Applications, 7(6), Dec. 2002.

[6] S. Peng et al. Algorithms for a core and k-tree core of a tree.
Journal of Algorithms, 15:143–159, 1993.

[7] S. Peng et al. A simple optimal parallel algorithm for a core
of a tree. Journal of Parallel amd Distributed Computing,
20:388–392, 1994.

[8] M. Ge, S. V. Krishnamurthy, and M. Faloutsos. Overlay
multicasting for ad hoc networks. In Proc. of the Third An-
nual Mediterranean Ad Hoc Networking Workshop (Med-
HocNet 2004), pages 131–143, June 2004.

[9] C. Gui and P. Mahapatra. Efficient overlay multicast for mo-
bile ad hoc networks. In Proc. of IEEE WCNC2003, March
2003.

[10] David B. Johnson and David A. Maltz. Dynamic source
routing in ad hoc wireless networks. Kluwer Academic Pub-
lishers, 1996.

[11] S. J. Lee and W. Su. Performance comparison study of ad
hoc wireless multicast protocols. In Proc. of IEEE INFO-
COM’00, Mar. 2000.

[12] Yamin Li, Shietung Peng, and Wanming Chu. Mcore: A
simple structure for effective overlay multicast on mobile ad
hoc networks. In Proceedings of The IASTED International
Conference on Parallel and Distributed Computing and Sys-
tems, pages 341–346, Nov. 2006.

[13] Yamin Li, Shietung Peng, and Wanming Chu. K-mcore for
multicasting on mobile ad hoc networks. In Proceedings of
the Seventh International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, pages
109–114. IEEE Computer Society Press, Dec. 2006.

[14] C. A. Morgan and P. J. Slater. A linear algorithm for a core
of a tree. Journal of Algorithms, 1:247–258, 1980.

[15] Roman Novak, Joze Rugelj, and Gorazd Kandus. Steiner
tree based distributed multicast routing in networks, Steiner
trees in industries (Combinatorial optimization, Vol. 11) Xi-
uzhen Cheng Ed. Kluwer Academic Publishers, 2001.

[16] E. Royer and C. E. Perkins. Multicast operations of the ad-
hoc on-demand distance vector routing protocol. In Proc. of
ACM MOBICOM’99, Aug. 1999.

[17] C. W. Wu and Y. C. Tay. Amris: a multicast protocol for ad
hoc wireless networks. In Proc. of IEEE NILCOM’99, Nov.
1999.

