
ACSAC01, Australian Computer Science Communications, Vol.23, No.4, IEEE Computer Society Press, 2001, pp.122–129

Exploiting Java Instruction/Thread Level Parallelism with Horizontal
Multithreading

Kenji Watanabe†, Wanming Chu†, and Yamin Li‡

†Department of Computer Hardware
University of Aizu

Aizu-Wakamatsu 965-8580 Japan

‡Department of Computer Science
Hosei University

Tokyo 184-8584 Japan

Abstract

Java bytecodes can be executed with the following three
methods: a Java interpretor running on a particular ma-
chine interprets bytecodes; a Just-In-Time (JIT) compiler
translates bytecodes to the native primitives of the particu-
lar machine and the machine executes the translated codes;
and a Java processor executes bytecodes directly. The first
two methods require no special hardware support for the
execution of Java bytecodes and are widely used currently.
The last method requires an embedded Java processor, pi-
coJavaI or picoJavaII for instance. The picoJavaI and pico-
JavaII are simple pipelined processors with no ILP (instruc-
tion level parallelism) and TLP (thread level parallelism)
supports. A so-called MAJC (microprocessor architecture
for Java computing) design can exploit ILP and TLP by
using a modified VLIW (very long instruction word) archi-
tecture and vertical multithreading technique, but it has its
own instruction set and cannot execute Java bytecodes di-
rectly. In this paper, we investigate a processor architecture
which can directly execute Java bytecodes meanwhile can
exploit Java ILP and TLP simultaneously. The proposed
processor consists of multiple slots implementing horizontal
multithreading and multiple functional units shared by all
threads executed in parallel. Our architectural simulation
results show that the Java processor could achieve an aver-
age 20 IPC (instructions per cycle), or 7.33 EIPC (effective
IPC), with 8 slots and a 4-instruction scheduling window
for each slot. We also check other configurations and give
the utilization of functional units as well as the performance
improvement with various kinds of working loads.

1. Introduction

Java programming language [3] has been widely ac-
cepted by industry and academia because of its powerful
functionality and portability, as well as the popularity of the

Internet. Java programs are compiled to classes, contain-
ing Java bytecodes and data, based on a virtual architec-
ture – the Java Virtual Machine (JVM) [9]. JVM is a stack-
oriented architecture, it is not dependent on any particular
real machine. Java bytecodes may be executed on various
platforms by interpretation or Just-In-Time (JIT) compiling
to the native primitives of the particular machine. The inter-
pretation means that the JVM architecture is emulated on a
machine and an interpreter interprets bytecodes one by one.
Compared to the direct execution of instructions, interpre-
tation will run at one tenth or even hundredth the speed.
Because the JVM is a stack oriented architecture, there are
manypushandpop instructions which do not perform any
computation. The interpreter has to interpret these instruc-
tions also. As a result, we cannot expect high performance
from this approach.

The JIT compiler translates the Java bytecodes into na-
tive RISC primitives dynamically. Because the Java byte-
codes cannot be executed directly, time for the compila-
tion is always needed at run time. Several variants of the
JIT concept have been proposed based on when bytecodes
are translated [2][11]. These methods also try to improve
performance by removing the push and pop instructions by
assigning the locations of variables to suitable RISC regis-
ters. In these cases, the stack and its related variables are
not needed. We can expect higher performance compared
to the first approach. However, because of the differences
between the JVM architecture and native architectures, the
code generated by the compilers is still not as good as opti-
mized RISC code generated by a C or C++ compiler.

For the purpose of increasing the performance of JVM,
Sun Microsystems has announced hardware solutions, pico-
JavaI [10] [13] and picoJavaII [14]. These are stack based
processors, and, do not address the issues of instruction
level parallelism (ILP) and thread level parallelism (TLP).
PicoJava aims at low cost embedded applications. How-
ever, with the increasing requirement of high-performance

122

network computing with Java, it is necessary to consider the
ILP and TLP issues for high-performance Java processor ar-
chitecture.

Sun’s Microprocessor Architecture for Java Computing
(MAJC) [12] design features both chip multiprocessing and
multithreading in order to beef up performance. MAJC
adopts a modified VLIW (very long instruction word) ar-
chitecture and up to 4 instructions can be packed into a
128-bit long instruction word. This means that the MAJC
cannot execute Java bytecodes directly, it still needs a com-
piler to compile bytecodes to the instructions of the MAJC
machine. MAJC adopts a vertical multithreading technique
which switches to another thread when one thread results in
a cache-miss. The vertical multithreading allows the pro-
cessor execute only one thread at a given time. MAJC can
be implemented with multiple identical processors on a chip
die. Each processor supports operations on all data types,
such as integer, fixed-point, floating-point, and packed in-
tegers. Suppose one thread running on a processor needs
only integer operation, then other functional units will not
be used, and cannot be used by other threads running on
other processors. This will result in low utilization of the
functional units. Functional units are cheap, but important
thing is that fully use of functional units can improve pro-
cessor performance.

Similar work can be done with DAISY (Dynamically Ar-
chitected Instruction Set from Yorktown) [4]. DAISY trans-
lates the binary code of a source architecture such as Pow-
erPC, x86, and S/390 to the binary code of a VLIW target
architecture at run-time, in a manner transparent to the user.

JVM architecture is a stack based architecture. Most
Java arithmetic instructions operate only on the top of the
stack. This feature makes the Java bytecodes more efficient
for its transmission over internet [10]. But meanwhile, it
also makes parallel execution of the Java bytecodes more
difficult because the stack top becomes a bottleneck for per-
formance improvement.

In this paper, we investigate the various level parallelism
of Java bytecodes and propose a Java processor architecture
which can exploit Java ILP and TLP efficiently. Our pro-
cessor architecture consists of multiple issuing slot, each
slot can exploit the ILP by executing multiple computa-
tional bytecodes as well as by executingpushandpopwith
zero time. The TLP is exploited by the parallel execution
of multiple threads simultaneously, we call ithorizontal
multithreading. The processor architecture contains mul-
tiple functional units shared by all threads. We can expect
higher performance with a small amount of functional units.
We have developed a Java ILP/TLP architectural simula-
tor which evaluates the performance and functional unit uti-
lization at various processor configurations. The simulator
consists of two parts: a Java bytecodes tracer and a perfor-
mance simulator. The tracer interprets Java class file and

record the execution trace into a trace file. The simulator
reads the trace file and the processor configurations, sim-
ulates the performance, and outputs the simulation results.
Our simulation results show that the Java processor could
achieve an average 20 IPC, or 7.33 EIPC which counts only
the computational instructions, with 8 issuing slots and 4-
instruction scheduling window for each slot.

The rest sections are organized as following. Section 2
describes the concept of multithreading. Section 3 intro-
duce the Java ILP/TLP processor architecture. Section 4
describes the Java architectural simulator and gives the sim-
ulation results. We conclude the paper in Section 5.

2. Vertical and Horizontal Multithreadings

Java provides the capability ofmultithreading. The pro-
grammer specifies that applications containthreads of exe-
cution, each thread designating a portion of a program that
may execute concurrently with other threads [1]. The Java
software in an application can generate multiple threads and
let them run bystart() method. These threads should besyn-
chronizedif there are dependencies. In the other hand, most
modern machines support multiple tasks among which there
may be no any dependency. Those tasks run on a single
thread machine in a context switching manner. Executing
multi-tasks in parallel will improve machine’s throughput.

Multithreading can efficiently use the microprocessor’s
computing power. When one task results in a cache-miss,
the processor will have an idle period while the system im-
ports data from the main memory. Multithreading allows
the CPU to work on a different thread during that down
time. The overall throughput is much higher. The first
thread will finish at about the same time as it would on a tra-
ditional CPU. In this case the same processor can complete
several other things at the same time [15]. This capability is
calledvertical multithreading, as shown as in Fig. 1.

Vertical multithreading improves the utilization of the
traditional CPU by putting other useful tasks into the idle
time of the first task. But if we view the execution of the
CPU at a given time, there is only a single task running.
This is very similar to the technique oftime slicingby which
each task has a scheduled period for the execution. Some-
times we say the vertical multithreading or time slicing can
perform multiple taskconcurrently, but notsimultaneously.

Theparallel multithreaded architecture(PMA) [6][7][8]
supports the parallel execution of multiple tasks in a sin-
gle processor environment. In a PMA processor, there are
severalinstruction issuing slots. Each slot is equivalent to
a logical processor. Multiple slots issue multiple instruc-
tions simultaneously from multiple threads at a clock cycle
as shown as in Fig. 2. We also refer it to ashorizontal mul-
tithreading.

PMA is different from a multiprocessor. In multipro-
cessor, there are several identical processors connected by

123

Idle Thread1 Thread2 Thread3 Thread4

(a)

(b)

Figure 1. Vertical multithreading (a) Cache miss (b) Vertical multithreading.

Idle Thread1 Thread2 Thread3 Thread4

Slot1

Thread5 Thread6

Slot2

Slot3

Figure 2. Horizontal multithreading.

interconnection network. Suppose a program running on a
processor does not contain any floating point operation, then
the floating point units in the processor will not be used and
cannot be used by other programs running on other proces-
sors. In PMA, multiple functional units are shared by all
slots, this will result in efficient use of the functional units.
In Fig. 2, there are 3 slots and each slot can also perform the
vertical multithreading.

3. Java ILP/TLP Processor Architecture

3.1. Java ILP Processor Architecture

Java ILP processor architecture focuses on the parallel
execution of Java computational instructions within a single
thread [16]. A typical computational instruction pops two
operands from the stack, operates on them, and pushes the
result back onto the stack. The push and pop instructions
(e.g. iload, istore) do not perform any computation. These
can be coalesced with computational instructions resulting
in zero cost push and pop. In the design of the stack based
processor, the key point for performance improvement is to
enable the processor to fetch as many operands as possible.
This can be done by designing a fast stack cache with mul-
tiple read and write ports. We can consider the stack cache
as a RISC register file.

Fig. 3 shows a possible Java ILP processor architecture.
Java bytecodes are scheduled in aninstruction scheduling
windowwhich consists of the instruction buffer and the in-
struction scheduling unit (ISU). An operand stack cache
unit (register file) is provided with multiple independent
read and write ports.

Instructions are executed in the integer and floating point
units. Multiple functional units are provided with reser-
vation stations (RSs) as well as data latches. The source
operands can be fetched in parallel from the register file
and fed to the RSs/latches. Some source operands may not
be available due to data dependencies. In this case, after

data are produced by functional units, they will be passed
to the RSs/latches where the instructions are waiting for the
results. The instructions in the instruction buffer can be is-
sued out-of-order and a reorder buffer is used for instruc-
tion graduation. Some temporary variables will not be used
again: there is no need to store them in the register file.

When the ISU encounters a branch instruction whose
branch target address can be determined (such as uncon-
ditional branch, method invocation or return), it can trans-
fer to the correct branch target and continue fetching in-
structions; if it encounters a conditional branch, it pre-
dicts the branch target by using Branch Target Buffer [5],
fetches instructions from the predicted target, and instructs
the instruction scheduling unit to execute them specula-
tively. If the branch is mispredicted, it instructs the instruc-
tion scheduling unit to cancel the speculatively executed re-
sults and fetches instructions from the correct branch target.

Memory access dependencies can be more easily
checked than in a RISC processor, because in JVM, dif-
ferent types of objects are accessed by different types of
instructions and there is no data dependency between the
different types of objects. A load buffer and a store buffer
are provided with tags indicating the type of the data in the
buffer. Data dependences are only checked within the same
data type and data can be bypassed from the store buffer to
the load buffer if their addresses are the same.

Local variable accesses are coalesced with computa-
tional instructions. In the JVM, thelocal variablesandtem-
porary variablesare located in the operand stack. Most Java
instructions are temporary variable oriented. These instruc-
tions get operands from the stack, operate on them and then
push results onto the stack.

Java is an object-oriented language: method invoca-
tions (equivalent of function, procedure, or subroutine calls
in structured languages) occur very frequently. For each
method, the JVM creates at runtime a method frame of vari-
able size, which contains the method parameters and local

124

Instruction
Cache

Integer Unit

Stack Cache Unit
(Register File)

Instruction
Buffer

Instruction
Scheduling Unit

(ISU)

Branch
Target
Buffer

FP Unit

Operand
Latch

Reservation
Stations

Integer Unit

Reorder
Buffer

Operand
Latch

Data
Cache

Store
Buffers

. . .

FP Unit

Reservation
Stations

Load
Buffers

Figure 3. Java ILP Processor

variables. In order to eliminate unnecessary parameter pass-
ing between methods, the stack is constructed so as to allow
overlap between methods, enabling direct parameter pass-
ing with no parameter copying. This structure overcomes
the disadvantages of register reuse in global register file ar-
chitectures (e.g. Power PC, Alpha etc). Furthermore, it
avoids the shortcomings of a rigid structure in circular over-
lapping register windows architectures with fixed window
sizes (e.g. SPARC).

When operations require access to the local variables,
iload-like instructions will be used to load values of the lo-
cal variables onto the operand stack (temporary variables)
and istore-like instructions store values of the temporary
variables from the operand stack to local variables. Con-
sequently, Java computational instructions can use zero-
address format. This not only reduces the cost of storing
bytecodes, but in any networked computing model, it also
effectively increases the available bandwidth [10].

By including a register-file-like operand stack cache in
our design, variables can be addressed directly so that data
movement between the variables and the top of the stack
becomes unnecessary.

The JVM architecture reflects object-oriented features of
Java language. Similar to traditional RISC architectures,
JVM memory reference instructions also includeload and
storeinstructions, but with significant differences in access-
ing modes.

Usually, in RISC architectures, a large number of in-
structions use the index addressing mode. This results in
the instruction scheduling unit encountering many unknown
memory addresses during program execution, hampering
efficient instruction scheduling and ILP exploitation.

There are three memory addressing modes in JVM: (1)
Array element access: An element of an array is accessed
by an array access reference address followed by an ele-

ment index (array, index). Both the array access reference
address and the element index are variables. (2)Object field
access: A field of an object is accessed by an object access
reference address followed by a field offset (object, mem-
ber). The object access reference address is a variable, but
the field offset is a constant which can be put in the instruc-
tion code. (3)Static field access: A static field is accessed
directly by the static field reference address (address). The
address is in the constant pool and instructions provide an
index to the constant pool.

In JVM, many memory reference dependencies can be
recognized from the instruction opcodes and the data types
before all the memory addresses are calculated, because the
across-boundary access and operation on data with differ-
ent types are not permitted. We have the following rules for
dependency detection: (1) There is no dependency between
instructions with different addressing modes. (2) There is
no dependency for instructions with different data types.
(3) For object field accesses, if the object reference ad-
dresses or field offsets are different, no dependency exists.
(4) For static field accesses, if theaddressesare different,
then there is no dependency. (5) For array object accesses,
if the array reference addresses or element indices are dif-
ferent, then no dependency exists. With these rules, a lot
of non-dependencies can be recognized in advance. This
not only improves the effect of instruction scheduling, but
also simplifies the design of a dynamic scheduling unit for
memory reference instructions.

3.2. Java TLP Processor Architecture

The Java ILP processor issues multiple instructions from
a thread at every clock cycle. We refer to the number of
instructions the processor can issue as theissue width. The
vertical multithreading can be implemented on such proces-

125

IU

RF/RB 1Slot 1

Instruction
Scheduling Unit

(ISU)

RS

Data
Cache

Store
Buffers

Load
Buffers

IU

RS

IU

RS

FPU

RS

FPU

RS

FPU

RS.

RF/RB 2 RF/RB 3 RF/RB N

BTB/
IC 1

Slot 2

BTB/
IC 2

Slot 3

BTB/
IC 3

Slot N

BTB/
IC N

. . .

.

Figure 4. Java TLP processor.

sor by means ofcontext switchingon cache miss.
We extended the Java ILP processor to Java TLP proces-

sor as shown in Fig. 4, based on the Multiple-Instruction-
Stream Multiple-Execution-Pipeline (MIS-MEP) architec-
ture [7]. The Java TLP processor has multiple issuing
slots which are provided with instruction caches (ICs),
branch target buffers (BTBs), register files (RFs) and re-
order buffers (RBs). Each slot can issue multiple instruc-
tions from one thread and deal with vertical multithread-
ing. Multiple slots issue multiple instructions from multiple
threads in parallel. Instructions are scheduled in ISU. If
there is neither data dependency nor resource conflict, in-
structions are sent to functional units for execution. Dif-
ferent from multiprocessor, multiple functional units are
shared among all slots.

Java bytecode instructions are executed in integer units
(IUs) and floating point units (FPUs). The IUs contain
branch units (BRUs), ALUs, multiplication units (MULs),
division units (DIVs), and load/store units (LSUs). The
BRUs are used for executing conditional branch instruc-
tions. The LSUs are used for executing load and store in-
structions except local accesses. Same as the Java ILP pro-
cessor, the functional units are provided with reservation
stations (RSs).

The multiple slots implement the horizontal multithread-
ing; meanwhile, each slot can also implement the verti-
cal multithreading if there are enough threads. For each
thread, it is still possible to issue multiple instructions in
every clock cycle.

4. Architectural Simulator and Experimental
Results

In order to evaluate the performance of the Java ILP/TLP
processor architecture, we developed an architectural simu-

lator. The simulator focuses on the measurement of effec-
tive instructions per cycle (EIPC), which just counts com-
putational instructions. We also measure the utilization of
the functional units which is the average number of func-
tional units required same time during the execution. We
use the trace-driven method: a Java bytecode tracer inter-
prets Java class file and saves required information into a
trace file; then an architectural simulator reads the trace file
and simulates the performance under various processor con-
figurations.

We make the following basic assumptions. First, the
stack cache (like register file) for each slot is 32 words, 2
read ports, 1 write port, and 1 background port. The back-
ground port is used to save and restore cache items when
overflow and underflow happen. Second, the branch predic-
tion buffer for each slot employs a 4-way associative table
with 512 entries and 2-bit history counters for prediction.
Third, the data cache is 32K bytes, 32-byte line size, and 4-
way associative. Next, Java processor functional units fall
into 6 types: BRU, ALU, FPU, LSU, MUL, and DIV. The
execution latency of BRU is 1 cycle; however,lookupswitch
instructions require 3 or more cycles, andtableswitchin-
structions require 5 cycles. The latencies of ALU and FPU
are 1 and 3 cycles, respectively. The LSU execution latency
is 1 cycle if data cache hits, and miss penalty is 3 cycles if
the L2 cache hits. The latencies of MUL and DIV are 3 and
14 cycles respectively.

Our simulation studies the effective instructions per cy-
cle and the number of required functional units. We carried
out the the simulation with different number of slots (1, 2,
4, and 8 slots) and different reorder buffer size of each slot
(4, 8, 16, and 32 words).

We used the following Java programs for the simulation.
• array: stores random values into an array.
• bbsort: sorts the elements of an array by a bidirectional

126

Table 1. Total executed instructions (I) and effective instructions (E)

array bbsort bsort dstone fibo hanoi linpack qsort sieve tree

I 0.645 0.497 0.539 0.511 0.542 0.792 8.049 0.630 0.748 0.743
E 0.271 0.192 0.219 0.188 0.145 0.236 3.759 0.228 0.278 0.270

(×106 instructions)

bubble sort algorithm.

• bsort: sorts the elements of an array by a bubble sort
algorithm.

• dstone: short dhrystone synthetic benchmark.

• fibo: calculates Fibonacci numbers iteratively.

• hanoi: solves the Towers of Hanoi puzzle recursively.

• linpack: Linpack benchmark (matrix calculations).

• qsort: sorts the elements of an array by a quick sort
algorithm.

• sieve: generates prime numbers.

• tree: adds new node with values into a tree using re-
cursive calls.

The programs are compiled to Java class files for simu-
lation. In each program, the total executed instructions (I)
and effective instructions (E) are shown in Tab. 1. We can
see that the effective instructions are generally 30–50% of
all instructions.

The trace files are used as instruction streams of the TLP
architectural simulator. In order to investigate the potential
parallelism, we first simulate the test programs without re-
source restriction of functional units for Java ILP/TLP pro-
cessor (Configuration I). The simulation studies the effec-
tive instruction execution per cycle and the average number
of required functional units.

Fig. 5 shows the measured instructions per cycle (IPC)
and effective instructions per cycle (EIPC) with different
RB sizes. These represent the potential parallelism of Java
bytecodes. EIPC is calculated by dividing the total num-
ber of executed effective instructions by the total number of
clock cycles, where the effective instructions are the compu-
tational instructions. IPC includes all instructions: branch,
method invocation and return, stack manipulations and local
variable instructions (transfers between local variable and
the top of the stack), in addition to the computational in-
structions. The effective instructions are 30–50% of all in-
structions, so the IPC results are about two to three times of
the EIPC. EIPC improves by increasing the instruction-level
scheduling scope but will become saturated, except Java
programs have the inherent parallelism. The Java processor
could achieve an average 1.47 EIPC with a 32-instruction
scheduling window of each slot and one instruction stream,
and an average 7.33 EIPC with a 4-instruction scheduling
window of each slot and 8 instruction streams.

0

5

10

15

20

25

1 2 4 8

IP
C

 a
nd

 E
IP

C

Number of slots

IPC(RB:32)
IPC(RB:16)

IPC(RB:8)
IPC(RB:4)

EIPC(RB:32)
EIPC(RB:16)
EIPC(RB:8)
EIPC(RB:4)

Figure 5. Result of IPC and EIPC, Configura-
tion I.

Fig. 6 shows the total utilization of functional units with
4, 8, 16, 32-instruction scheduling window for each slot.
The utilization is the average number of functional units
per cycle requested for computation. We found that the
load/store units are most used among all kinds of functional
units. It means that the number of load/store units and the
access ports of data cache are important issues for the per-
formance improvement.

Fig. 7 shows the speedup of overall simulation results
over the basic configuration which has 1 slot and 4-word re-
order buffer. The speedup becomes higher by the increasing
reorder buffer size and number of slots. However, by in-
creasing the scheduling scope of instructions, performance
improvement is not obvious. This is because of the limita-
tion of ILP in one thread due to the data dependency and
control dependency. Increasing the number of slots im-
prove performance greatly if there are sufficient indepen-
dent threads. We conclude that exploiting the thread level
parallelism is becoming more important than that of instruc-
tion level parallelism.

The simulation results shown above assume that there is
no restriction on functional units, that is, there are as many
functional units as required. However, in a real processor

127

Figure 6. Utilization of functional units, Configuration I.

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
ee

du
p

Number of slots

RB:32
RB:16
RB:8
RB:4

Figure 7. Result of IPC and EIPC, Configura-
tion I.

design, we must fix the number of functional units. Next
we will show the results under the following two configura-

tions: Configuration II (CII) and Configuration III (CIII).

FUs: BRU ALU FPU MUL DIV LSU
CII: 1 1 1 1 1 1
CIII: 2 2 1 1 1 4

Tab. 2 shows the performance degradation of the two
configurations. In Tab. 2, ET stands for the execution time
in 103 clock cycles, ratio is the times of ET of Configura-
tion I (CI). As the scale of the processor becomes larger, the
ratio also becomes larger, this is because of the lack of the
functional unit resource. For example, the ET of CIII with
8-slot and 4-instruction scheduling window is 3.40 times of
the ET of CI.

5. Conclusion

Java has been widely accepted by industry and academia,
because of its portability and ease-of-use, as well as the pop-
ularity of the Internet. Higher performance of the JVM is
indispensable in order to develop the applications that de-
mand high performance. As network computing gains im-
portance, high performance Java ILP/TLP processors will
be demanded in the near future.

128

Table 2. Performance comparison of three configurations.

Slots 1 2 4 8
RB 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

ET 8971 6995 6107 59784462 3717 3500 33692292 1975 1859 1849 1218 1079 1045 1036
CI IPC 2.77 3.57 3.89 3.97 5.56 6.97 7.54 7.72 10.59 13.03 14.26 14.2920.00 23.80 25.13 25.78

EIPC 1.02 1.32 1.44 1.47 2.03 2.56 2.77 2.84 3.88 4.78 5.24 5.25 7.33 8.72 9.21 9.45

ET 9457 8183 7998 80155832 6138 6357 63605322 6201 6360 6364 5545 6337 6471 6509
CII IPC 2.63 3.12 3.26 3.33 4.37 4.32 4.26 4.26 4.61 4.26 4.21 4.16 4.22 4.00 3.91 3.88

EIPC 0.96 1.15 1.19 1.22 1.61 1.58 1.55 1.56 1.70 1.56 1.54 1.52 1.55 1.47 1.43 1.42
Ratio 1.05 1.17 1.31 1.34 1.31 1.65 1.82 1.89 2.32 3.14 3.42 3.44 4.55 5.87 6.19 6.28

ET 9274 7756 6748 70245215 4700 4598 45594271 4198 4199 4195 4140 4170 4163 4159
CIII IPC 2.76 3.53 3.80 3.89 5.42 6.63 7.01 7.20 9.13 10.04 10.12 10.1811.10 10.63 10.78 10.81

EIPC 1.01 1.30 1.40 1.43 1.97 2.42 2.56 2.63 3.29 3.61 3.64 3.66 4.01 3.85 3.90 3.91
Ratio 1.03 1.11 1.10 1.17 1.17 1.26 1.31 1.35 1.86 2.13 2.26 2.27 3.40 3.86 3.98 4.01

In order to investigate the potential parallelism of Java
bytecodes, we have described a Java processor architecture
which aims to exploit ILP and TLP. Our Java processor can
directly execute multiple computational bytecode instruc-
tions and multiple threads in parallel so that we can ex-
pect higher performance than attainable with PicoJava, or
from interpretation and JIT compilation. Because the Java
bytecodes are stack based, the top of the stack becomes the
bottleneck for the performance improvement. High perfor-
mance is achieved by executing local variable instructions
with zero time and providing multiple instruction streams
to execute threads simultaneously.

We have also developed a Java ILP/TLP architectural
simulator which can evaluate the performance at various
processor configurations. Simulations on various Java
benchmark programs were performed in order to predict the
performance improvement compared to the traditional stack
based processor architecture which does not exploit ILP and
TLP. The simulation results show that the Java processor
could achieve an average 1.47 EIPC with one instruction
stream and a 32-instruction scheduling window (ILP), and
an average 7.33 EIPC with 8 instruction streams and a 4-
instruction scheduling window (ILP and TLP).

References

[1] H. M. Deitel and P. J. Deitel. Java, How to Program.
Printice-Hall, Inc., 1997.

[2] K. Ebcioglu, E. Altman, and E. Hokenek. A java ilp machine
based on fast dynamic compilation. InIntl. Workshop on
Security and Efficiency Aspects of Java, Jan. 1997.

[3] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. Addison-Wesley. see also http://www.javasoft.
com/docs/books/jls/index.html.

[4] IBM. Daisy: Dynamically architected instruction set from
yorktown. http://oss.software.ibm.com/developerworks/
opensource/daisy.

[5] J. Lee and A. J. Smith. Branch prediction strategies and
branch target buffer design.IEEE Computer, pages 6–22,
January 1984.

[6] Y. Li and W. Chu. A performance prediction model for
a parallel multithreaded risc processor architecture. In
Sixth IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, pages 162–166, Oct. 1994.

[7] Y. Li and W. Chu. Design and implementation of a multiple-
instruction-stream multiple-execution-pipeline architecture.
In Seventh IASTED International Conference on Parallel
and Distributed Computing and Systems, pages 477–480,
Oct. 1995.

[8] Y. Li and W. Chu. The effects of stef in finely parallel mul-
tithreaded processors. InFirst IEEE Symposium on High-
Performance Computer Architecture, pages 318–325, Jan-
uary 1995.

[9] T. Lindholm and F. Yellin.The Java Virtual Machine Spec-
ification. Addison-Wesley. see also http://www.javasoft.
com/docs/books/vmspec/.

[10] H. McGhan and M. O’Connor. Picojava: A direct execution
engine for java bytecode.IEEE Computer, pages 22–30,
October 1998.

[11] C. A. Shieh, J. C. Gyllenhaal, and W. W. Hwu. Java byte-
code to native code translation: The caffeine prototype and
preliminary results. InProc. MICRO-29. IEEE Press, 1996.

[12] Sun. Majc architecture tutorial. http://developer.java.sun.
com/developer/products/majc/docs.html.

[13] Sun’sWhitePaper. Picojava-i microprocessor core archi-
tecture. http://solutions.sun.com/embedded/databook/pdf/
whitepapers/WPR-0014-01.pdf.

[14] J. Turley. Microjava pushes bytecode performance – sun’s
microjava 701 based on new generation of picojava core.
Microprocessor Report, pages 9–12, November 17, 1997.

[15] W. Wade. Majc combines multiprocessing, mul-
tithreading features. http://www.edtn.com/story/tech/
OEG19990819S0036-R.

[16] K. Watanabe and Y. Li. Parallelism of java bytecode pro-
grams and a java ilp processor architecture.Australian Com-
puter Science Communications, 21(4):75–84.

129

