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Abstract. The Java programming language has been widely used to develop dy-
namic content in Web pages. The Java Virtual Machine (JVM) executes Java
bytecode. For efficient transmission over the Internet, the Java bytecode is a stack
oriented architecture: instructions need not contain source and destination speci-
fiers in their bytecodes. The Java bytecodes may be executed on various platforms
by interpretation or just in time (JIT) compiling to the native primitives of the
particular machine. However, with a few exceptions, Java has not been used for
developing network computing applications that demand high performance. In
this paper, we investigate the potential parallelism of Java bytecodes and describe
a Java processor architecture which aims to exploit instruction level parallelism
(ILP). A Java processor can execute bytecodes directly so that we can expect
higher performance than from interpretation or JIT compilation. In contrast to
other Java processors, our processor exploits ILP: it can execute multiple com-
putational instructions in parallel. Because the Java Virtual Machine stack based,
pushandpop instructions are frequent. Usually, the top of the stack will become
the bottleneck. We investigate the possibilities of parallel access to the stack and
the execution of push/pop with zero time. We have developed an architectural
simulator which evaluates the performance of various configurations. The sim-
ulation results show that our Java ILP processor could achieve an average 2.96
EIPC (effective instructions per cycle) with a 16-instruction scheduling window
and 3.36 EIPC with a 32-instruction window.

1 Introduction

Java[B. and G., ] has been widely accepted by industry and academia because of its
portability and ease-of-use, as well as the popularity of the Internet. The Java Virtual
Machine (JVM)[Lindholm and Yellin, 1997] is a platform for executing Java bytecode
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programs. The JVM is “virtual” because it is generally implemented by emulation in
software on a “real” machine.

There are three approaches to executing Java bytecodes. The simplest approach is
to interpret them: the JVM architecture is realized on a machine and an interpreter
interprets bytecodes one by one. Compared to the direct execution of instructions, in-
terpretation will will run at one tenth or even hundredth the speed. Because the JVM is a
stack oriented architecture, there manypushandpopinstructions which do not perform
any computation. The interpreter has to interpret these instructions also. As a result, we
cannot expect high performance from this approach.

The second approach translates the Java bytecodes into native RISC primitives. This
can be done dynamically by just in time (JIT) compilers. Because the Java bytecodes
cannot be executed directly, time for compilation is always needed at run time. Several
variants of the JIT concept have been proposed based on when bytecodes are trans-
lated[Shieh and Hwu, 1996] [Ebcioglu et al., 1997]. These methods also try to improve
performance by removing the push and pop instructions by assigning the locations of
variables to suitable RISC registers. In these cases, the stack and its related variables are
not needed. We can expect higher performance compared to the first approach. How-
ever, because of the differences between the JVM architecture and native architectures,
the code generated by the compilers is still not as good as optimized RISC code gener-
ated by a C or C++ compiler.

The third approach is to design a Java stack processor to execute bytecodes directly.
For example, the Sun PicoJava and MicroJava[WhitePaper, ][Turley, 1997] processors
can execute one Java bytecode instruction per cycle for most simple instructions. In or-
der to improve performance, these Java processors were designed to recognize certain
code sequences that occur frequently and replace them with faster operations (instruc-
tion folding). An example computing C=A+B is shown below.

iload A // load A from frame and push it on to stack
iload B // load B from frame and push it on to stack
iadd // add the two data at the top of the stack

// and replace them with the sum
istore C // pop the result from the stack and

// store it to the destination C in frame

Instead of pushing A and B onto the stack, PicoJava 2 (the core of MicroJava)
fetches A and B from the method frame and feeds them directly to ALU for computa-
tion; similarly, it stores the result generated by ALU directly to the destination. That is,
PicoJava 2 processes the four Java instructions just like a RISC instruction: ADD A, B,
C.

To keeps costs low, both Java processors did not deal with instruction level paral-
lelism (ILP) issues: they cannot execute multiple computational instructions in parallel
in a clock cycle. As network computing gains importance, high performance Java ILP
processors will be demanded in the near future.

In this paper, we investigate the potential parallelism of Java bytecode programs and
describe a Java processor architecture considering ILP issues. Our Java processor can
execute multiple computational bytecode instructions in parallel directly so that we can
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expect higher performance than attainable with the PicoJava and MicroJava processors,
or from interpretation or JIT compilation. Because the Java bytecodes are stack based,
the top of the stack will become the bottleneck for performance improvement. We in-
vestigate the possibilities of parallel access to the stack and the execution of push and
pop in zero time.

We developed an architectural simulator which can evaluate the performance of var-
ious processor configurations. The simulation results from Java benchmark programs
show that the Java ILP processor could achieve an average 2.96 EIPC (effective in-
structions per cycle) with a 16-instruction scheduling window or 3.36 EIPC with a
32-instruction window.

The EIPC is calculated by dividing the total number of effective instructions ex-
ecuted by the total number of clock cycles, where the effective instructions are the
computational instructions. Effective instructions do not include: unconditional branch,
method invocation and return, stack manipulations and local variable instructions that
transfer values between local variables and the top of the stack. Since the effective in-
structions are 30-50% of all instructions, the IPC based on total instructions will be two
to three times the EIPC.

Study of the parallelism of Java bytecode programs is helpful not only for tuning the
design parameters of a Java ILP processor, but also for developing high performance
JIT compilers.

We describe the Java ILP processor architecture next and then give our preliminary
measurements of the processor performance.

2 Java ILP Processor Architecture

2.1 Parallel Access to Operand Stack

Our goal is to develop a Java ILP processor architecture which can execute Java compu-
tational instructions in parallel. A typical computational instruction pops two operands
from the the stack, operates on them, and pushes the result back onto the stack. The
push and pop instructions (e.g. iload, istore) do not perform any computation. These
can be coalesced with computational instructions resulting in zero cost push and pop.

The Java bytecodes fall into the following categories: (1)Computational instruc-
tions: The common feature of these instructions is that the operands are popped from
the stack. After operation, the results are pushed back onto the stack. (2)Stack manage-
ment instructions: These duplicate, remove and swap data in the stack. (3)Local vari-
able instructions: These transfer values between local variables and the operand stack.
(4) Memory reference instructions: These access fields of objects and array elements
which are located in memory. They load fields or array elements and push them onto
the stack or store the values from the top of the stack to memory locations. (5)Branch
instructions: There are two kinds of branch instructions: unconditional and conditional
ones. (6)Method invocation and return instructions: These are used in method invoca-
tions and returns from method. (7)Others: The remaining instructions include monitor
instructions and exception handling instructions; they can be considered special kinds
of branch instructions.
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Among the instructions, only the computational ones do useful work. The local
variable and stack management instructions appear in the Java instruction set only to
support the stack architecture. The memory reference instructions are the equivalent of
the load/store instructions in RISC architectures. The method invocation instructions
and return instructions are the equivalent of the subroutine call and return instructions
in RISC architectures.

In the design of the stack based processor, the key point for performance improve-
ment is to enable the processor to fetch as many operands as possible. This can be done
by designing a fast stack cache with multiple read and write ports. We can consider the
stack cache as a RISC register file. An example is illustrated in Fig. 1.

  Java bytecodes
==================
iload A  // push A
iload B  // push B
iadd     // C=A+B
istore C // pop C
iload D  // push D
iload E  // push E
isub     // F=D+E
istore F // pop F

  ILP Execution
===================
ADD A, B, C
SUB D, E, F

B

C

A

top

ALU1

Stack Cache (Register File)

E

F

D

ALU2

Java ILP processor executes eight
Java instructions in one clock cycle

Fig. 1. Instruction folding

2.2 Java ILP Processor Architecture

Java bytecodes are scheduled in aninstruction scheduling windowwhich consists of the
instruction buffer and the instruction scheduling unit (ISU), as shown as in Fig. 2. An
operand stack cache unit (register file) is provided with multiple independent read and
write ports.

Instructions are executed in the integer and floating point units. Multiple functional
units are provided with reservation stations (RSs) as well as data latches. The source
operands can be fetched in parallel from the register file and fed to the RSs/latches.
Some source operands may not be available due to data dependencies. In this case, after
data are produced by functional units, they will be passed to the RSs/latches where the
instructions are waiting for the results. The instructions in the instruction buffer can
be issued out-of-order and a reorder buffer is used for instruction graduation. Some
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Fig. 2.Java ILP Processor

temporary variables will not be used again: there is no need to store them in the register
file.

When the ISU encounters a branch instruction whose branch target address can be
determined (such as unconditional branch, method invocation or return), it can trans-
fer to the correct branch target and continue fetching instructions; if it encounters a
conditional branch, it predicts the branch target by using Branch Target Buffer[Lee and
Smith, 1984], fetches instructions from the predicted target, and instructs the instruction
scheduling unit to execute them speculatively. If the branch is mispredicted, it instructs
the instruction scheduling unit to cancel the speculatively executed results and fetches
instructions from the correct branch target.

Memory access dependencies can be more easily checked than in a RISC processor,
because in JVM, different types of objects are accessed by different types of instructions
and there is no data dependency between the different types of objects. A load buffer
and a store buffer are provided with tags indicating the type of the data in the buffer.
Data dependences are only checked within the same data type and data can be bypassed
from the store buffer to the load buffer if their addresses are the same.

2.3 Local Variable Accesses

Local variable accesses are coalesced with computational instructions. In the JVM, the
local variablesand temporary variablesare located in the operand stack. Most Java
instructions are temporary variable oriented. These instructions get operands from the
stack, operate on them and then push results onto the stack.

Java is an object-oriented language: method invocations (equivalent of function,
procedure, or subroutine calls in structured languages) occur very frequently. For each
method, the JVM creates at runtime a method frame of variable size, which contains
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the method parameters and local variables. In order to eliminate unnecessary parameter
passing between methods, the stack is constructed so as to allow overlap between meth-
ods, enabling direct parameter passing with no parameter copying. This structure over-
comes the disadvantages of register reuse in global register file architectures (e.g. Power
PC, Alpha etc). Furthermore, it avoids the shortcomings of a rigid structure in circular
overlapping register windows architectures with fixed window sizes (e.g. SPARC).

When operations require access to the local variables,iload-like instructions will be
used to load values of the local variables onto the operand stack (temporary variables)
and istore-like instructions store values of the temporary variables from the operand
stack to local variables. Consequently, Java computational instructions can use zero-
address format. This not only reduces the cost of storing bytecode, but in any networked
computing model, it also effectively increases the available bandwidth[McGhan and
O’Connor, 1998].

By including a register-file-like operand stack cache in our design, variables can be
addressed directly so that data movement between the variables and the top of the stack
becomes unnecessary.

2.4 Memory Accesses

The JVM architecture reflects object-oriented features of Java language. Similar to tra-
ditional RISC architectures, JVM memory reference instructions also includeload and
storeinstructions, but with significant differences in accessing modes.

Usually, RISC architectures have two kinds of addressing mode: direct addressing
and indexed addressing (we don’t distinguish between an index register and a base reg-
ister). However, in reality, in most application programs, a large number of instructions
use the index addressing mode because the direct addressing mode is unable to access
the whole address space. Using the index addressing mode means that the instruction
scheduling unit encounters many unknown memory addresses during program execu-
tion, hampering efficient instruction scheduling and ILP exploitation.

There are three memory addressing modes in JVM: (1)Array element access: An
element of an array is accessed by an array access reference address followed by an
element index (array, index). Both the array access reference address and the element
index are variables. (2)Object field access: A field of an object is accessed by an object
access reference address followed by a field offset (object, member). The object access
reference address is a variable, but the field offset is a constant which can be put in the
instruction code. (3)Static field access: A static field is accessed directly by the static
field reference address (address). The address is in the constant pool and instructions
provide an index to the constant pool.

Cross-boundary access and operation on data with different types are not permitted.
Therefore, many memory reference dependencies can be recognised from the instruc-
tion opcodes and the data types before all the memory addresses are calculated. We have
the following rules for dependency detection: (1) There is no dependency between in-
structions with different addressing modes. (2) There is no dependency for instructions
with different data types. (3) For object field accesses, if the object reference addresses
or field offsets are different, no dependency exists. (4) For static field accesses, if the
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addressesare different, then there is no dependency. (5) For array object accesses, if the
array reference addresses or element indices are different, then no dependency exists.

With these rules, a lot of non-dependencies can be recognised in advance. This not
only improves the effect of instruction scheduling, but also simplifies the design of a
dynamic scheduling unit for memory reference instructions.

3 Architecture Simulator and Test Programs

In order to evaluate the performance of the Java ILP processor architecture, we devel-
oped an architectural simulator in C++. The simulator focuses on the measurement of
effective instructions per cycle (EIPC) (which just counts computational instructions)
and the number of read/write ports of the operand stack cache. It consists of a Java
bytecode tracer and a performance simulator. The tracer accepts Java bytecode pro-
grams (class files) and executes them by interpretation. During interpretation, each Java
bytecode instruction (trace) is sent to the simulator. The performance simulator accepts
the trace and measures the performance with various processor configurations.

We make the following basic assumptions. First, the data cache is 32Kb, 32-byte
line size, and 4-way set associative. Second, the branch prediction buffer employs a
fully associative table with 512 entries and 2-bit counters for prediction. Third, Java
processor functional units have 3 kinds of execution pipelines: integer, branch and float-
point, used for executing integer, conditional branch, and floating point instructions,
with execution latencies of 1, 1, and 3 cycles, respectively. All are fully pipelined:
floating point division may need more cycles for execution, but here we assume its
latency is also 3 cycles.

Our simulation studies the effective instruction execution per cycle and the number
of required read/write ports of the operand stack cache. We carried out the simulation
with different instruction scheduling windows (16, 32 and 64 instructions).

In this paper, we used the following Java programs for testing. Programs were com-
piled to Java class files for simulation.

linpack: linpack Java version for measuring JVM performance; uses double precision
data (2 words in size) for matrix calculations; total instructions8× 106.

qsort: sorts the elements of an integer array; total instructions217.2× 106.
sieve: generates prime numbers; total instructions165.5× 106.
hanoi: solves the Towers of Hanoi puzzle recursively; total instructions178.3× 106.
dhry: short dhrystone synthetic benchmark; total instructions85.3× 106.
fibo: calculates Fibonacci numbers of long words (2 words) iteratively; total instructions

288.2× 106.
array: stores random integer values into an array; total instructions42.5× 106.
tree: adds new nodes with integer values into a tree using recursive calls; total instruc-

tions77.0× 106.

4 Preliminary Results

Table 1 shows the measured EIPC values with no resource restrictions: they represent
the potential parallelism of the Java bytecodes. The table also lists the number of ports
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of the stack cache required to obtain this performance.

Program
SR Items linpackqsortsievehanoi dhry fibo array tree

overall

EIPC 2.11 2.74 2.89 3.85 4.22 3.99 1.94 1.95 2.96
IPC 4.57 7.67 7.79 13.0811.6915.96 5.31 6.01 9.01

Read 5.09 4.83 4.66 6.77 5.85 12.97 4.69 3.90 6.1016 AvgPorts
Write 2.28 1.01 0.67 2.46 1.86 4.99 2.19 1.84 2.16
Read 20 22 14 15 16 20 14 16 22MaxPorts
Write 8 9 9 9 9 11 9 9 11

EIPC 3.40 2.82 2.89 4.55 5.22 3.99 1.94 2.10 3.36
IPC 7.39 7.91 7.79 15.4514.4515.97 5.31 6.47 10.09

Read 8.22 4.98 4.66 8.00 7.24 12.97 4.69 4.21 6.8732 AvgPorts
Write 3.68 1.04 0.67 2.91 2.30 4.99 2.19 1.98 2.47
Read 36 27 27 27 27 27 27 27 36MaxPorts
Write 14 14 14 14 14 14 14 14 14

EIPC 5.44 2.83 2.89 6.20 6.29 3.99 1.94 2.10 3.96
IPC 11.81 7.92 7.79 21.0817.4115.97 5.31 6.47 11.72

Read 13.14 4.99 4.66 10.91 8.71 12.97 4.69 4.21 8.0464 AvgPorts
Write 5.88 1.05 0.67 3.97 2.78 4.99 2.19 1.98 2.94
Read 49 56 30 30 30 30 30 30 56MaxPorts
Write 23 21 20 20 20 20 20 20 23

SR: Scheduling range (instructions)

Table 1.EIPC and number of ports required

AvgPorts represents the average number of read/write ports for the stack cache and
MaxPorts represents the maximum number of read/write ports which are required.

EIPC is calculated by dividing the total number of executed computational instruc-
tions by the total number of clock cycles, where the effective instructions are the compu-
tational instructions; while IPC includes all instructions: unconditional branch, method
invocation and return, stack manipulations and local variable instructions (transfers be-
tween local variable and the top of the stack), in addition to computational instructions.

The IPC results are two to three times the EIPC ones, because effective instructions
are 30–50% of all instructions. EIPC improves as the instruction scheduling scope in-
creases but will become saturated, except forlinpack, hanoi, anddhry. This is, in part,
due to the inherent parallelism of the programs. The other factor which influences the
EIPC is correctness of branch prediction. We list the branch prediction success in Table
2.

From Table 1, we observe that the required number of the operand stack cache ports
becomes larger as the size of instruction scheduling window increases. MaxPorts is the
maximum number of ports which would allow the processor to access as many data as
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Programlinpack qsort sievehanoi dhry fibo array tree
Hit ratio 0.967 0.7950.8780.6670.8670.9990.7500.817

Table 2.Branch prediction success

desired in parallel without performance decreasing.
Although MaxPorts is large, AvgPorts is quite small. In a real implementation, we

can fix the number of the operand stack cache ports at reasonable values. Next, we
measured EIPC with fixed numbers of operand stack cache ports. In general, a compu-
tational instruction reads two operands from the stack, operates on them, and writes the
result onto the stack. So we assumed that the number of read ports is twice the num-
ber of write ports for the operand stack cache. All results are shown in Table 3. EIPC
improves as the number of ports increases. If the number of ports is small, EIPC is not
enhanced by increasing the size of instruction scheduling window. The results listed in
Table 1 and 3 are helpful for tuning the architectural parameters when we design a Java
ILP processor.

Read/Write portsSR
2/1 4/2 6/3 8/4 10/5

16 0.96 1.79 2.25 2.63 2.77
32 0.97 1.82 2.39 2.86 3.05
64 0.97 1.82 2.39 2.93 3.25

SR: Scheduling range (instructions)

Table 3.EIPC results with fixed number of ports in all.

We also measured the hit ratio and overflow/underflow for the operand stack cache.
The results are listed in Table 4.

Cache size (words) & Hit Ratio Cache size & Overflow/Underflow (103)SR
64 128 256 512

SR
64 128 256 512

16 0.990 0.996 0.999 1 16 245.8/245.870.3/70.312.5/12.5 0/0
32 0.989 0.995 0.998 1 32 231.3/231.270.3/70.312.1/12.1 0/0
64 0.988 0.994 0.998 1 64 159.7/159.660.4/60.312.0/11.9 0/0

SR: Scheduling range (instructions)

Table 4.Operand stack cache hit ratio and overflow/underflow in all.
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Because the JVM is a stack oriented architecture (most operations take place at the
top of the stack), the hit ratios are quite high. The hit ratio becomes a little higher as the
size of the cache increases. An interesting fact is that the hit ratio becomes worse as the
scheduling scope increases. This is because, in the case of instruction scheduling with
a large scope, more data needs to reside in the cache simultaneously.

Overflow or underflow occurs when the program invokes new methods resulting in
access to locations out of the range of the stack cache. The cache can be organized as
a circular buffer. A procedure for dealing with overflow and underflow is needed. It
usually saves old data to the data cache when overflow occurs and restores data from
the data cache on underflow. In a real processor design, the save and restore operations
can be performed in the background so that we can use a small operand stack cache.
This also makes it easy to design a stack cache with multiple read/write ports.

5 Conclusion

We have described a Java ILP processor design which can perform parallel execution
of the computational instructions. High performance is achieved by providing parallel
access to the stack cache and executing local variable instructions with zero time.

We have also developed a Java ILP processor architecture simulator which can eval-
uate the performance at various processor configurations. Simulations on various Java
benchmark programs were performed in order to predict the performance improvement
compared to the traditional stack based processor architecture which does not exploit
ILP. Our results show that the new processor with a 16-instruction scheduling window
could achieve an average 2.96 EIPC or 3.36 EIPC with a 32-instruction window.
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