
Australian Computer Science Communications, Vol.22, No.4, 2000, pp.9–16, IEEE Comp. Society Press

Cost/Performance Tradeoff ofn-Select Square Root Implementations

Wanming Chu and Yamin Li

Computer Architecture Laboratory
The University of Aizu

Aizu-Wakamatsu 965-8580 Japan
w-chu@u-aizu.ac.jp, yamin@u-aizu.ac.jp

Abstract

Hardware square-root units require large numbers of
gates even for iterative implementations. In this pa-
per, we present four low-cost high-performance fully-
pipelinedn-select implementations (nS-Root) based on a
non-restoring-remainder square root algorithm. ThenS-
Root uses a parallel array of carry-save adders (CSAs).
For a square root bit calculation, a CSA is used once. This
means that the calculations can be fully pipelined. It also
uses then-way root-select technique to speedup the square
root calculation. The cost/performance evaluation shows
that n=2 or n=2.5 is a suitable solution for designing a
high-speed fully pipelined square root unit while keeping
the low-cost.

1 Introduction

Square root is an important operation in scientific com-
putations and multi-media applications. It calculatesY =√
X, whereX is the radicand andY is the root. Although

many existing designs of square root unit adopted iterative
version, those designs still used a large number of gates.
When we expand the designs to pipeline version, the cost
will be an order of magnitude higher than that of iterative
ones.

We present four pipelined square root implementations
(nS-Root) based on a non-restoring-remainder square root
algorithm. Our work shows that the high-performance fully
pipelined square root unit can be implemented at low-cost.

The nS-Root uses a parallel array of the carry-save
adders (CSAs) to calculate all the partial remainders in
a pipeline manner. Then denotes the parallelism of
the square root calculations. Increasingn will improve
the performance but the area cost also increase. Our
cost/performance evaluation shows thatn=2 or 2.5 is a
suitable choice.

We first review the previous square root algorithms.
Then we introduce the non-restoring-remainder square root
algorithm. We next describe thenS-Root implementations
and their cost/performance evaluation with comparison to
other implementations.

2 Brief Review of Previous Square Root Al-
gorithms

The square root algorithms and implementations have
been addressed mainly in three methods:Newton-Raphson,
SRT-Redundant, andNon-Redundantmethods.

2.1 Newton-Raphson method

The Newton-Raphson method has been adopted in many
implementations [5] [7] [14] [17]. In order to calculate
Y =
√
X, an approximate value is calculated by iterations.

For example, we can use the Newton-Raphson method
on f(T ) = 1/T 2 − X. The zero of this function is at
T = 1/

√
X. Applying Newton iteration to it will give an

iterative method of computing1/
√
D fromD.

Ti+1 = Ti −
f(Ti)
f ′(Ti)

= Ti(3− T 2
i X)/2

whereTi is an approximate value of1/
√
X. After n-time

iterations, an approximate square root can be obtained by
equationY =

√
X ' TnX.

The algorithm needs a seed generator for generatingT0,
a ROM table for instance. At each iteration, multiplica-
tions and additions or subtractions are needed. In order to
speed up the multiplication, it is usual to use a fast parallel
multiplier, Wallace tree for example, to get a partial pro-
duction and then use a carry propagate adder (CPA) to get
the production.

9



Because the multiplier requires a rather large number of
gate counts, it will be at high cost to place as many multipli-
ers as required in addition to the pipeline registers to realize
fully pipelined operation for square root instructions.

In most real designs, a multiplier is shared by the op-
erations of multiplication, divison, and square root. This
means that the instruction level parallelism of those opera-
tions cannot be exploited in such designs. And also, it will
be a little hard task to get an exact square root remainder.

2.2 SRT-Redundant method

The classical radix-2 SRT-Redundant method [2] [4] [9]
[10] [13] [16] is based on the recursive relationship

Xi+1= 2Xi − 2Yiyi+1 − y2
i+12−(i+1)

Yi+1 = Yi + yi+12−(i+1)

whereXi is ith partial remainder (X0 is radicand),Yi is
ith partially developed square root withY0 = 0, yi is ith
square root bit, andyiε{−1, 0, 1}.

The yi+1 is obtained by applying the digit-selection
function yi+1 = Select(X̃i), or for high-radix SRT-
Redundant methods,yi+1 = Select(X̃i, Ỹi), whereX̃i and
Ỹi are estimates obtained by truncating redundant represen-
tations ofXi andYi, respectively. In each iteration, there
are four subcomputations: (1) one digit shift-left ofXi to
produce2Xi, (2) determination ofyi+1, (3) formation of
F = −2Yiyi+1 − y2

i+12−(i+1), and (4) addition ofF and
2Xi to produceXi+1.

The following procedure shows the derivation ofXi+1.

Xi+1 = (X0 − Y 2
i+1)2i+1

= (X0−Y 2
i − 2Yiyi+12−(i+1)− y2

i+12−2(i+1))2i+1

= (X0 − Y 2
i )2i+1 − 2Yiyi+1 − y2

i+12−(i+1)

= 2Xi − 2Yiyi+1 − y2
i+12−(i+1).

A CSA can be used to speedup the addition ofF and
2Xi. But, theF needs to be converted to the two’s comple-
ment representation in order to be fed to the CSA, this can
be done using an on-the-fly converter. Moreover, for the
determination ofyi+1, the selection function is rather com-
plex, especially for high-radix SRT algorithms, although it
depends only on the low-precision estimates ofXi andYi.

Since the complicity of the circuitry, some of the imple-
mentations use an iterative version, that is, all the iterations
share same hardware resources. Consequently, the imple-
mentations are not capable of accepting a new square root
instruction on every clock cycle. A systolic array imple-
mentation is described in [3].

2.3 Non-Redundant method

The Non-Redundant method [1] [6] [8] [15] is similar
to the SRT method but it uses the two’s complement rep-

resentation for square root. The classical Non-Redundant
method is based on the computationsRi+1 = X − Y 2

i and
Yi+1 = Yi + yi+12−(i+1) whereRi is ith partial remain-
der,Yi is ith partial square root withY1 = 0.1, andyi is
ith square root bit withy1 = 1. The resulting value is se-
lected by checking the sign of the remainder. IfRi+1 ≥ 0,
yi+1 = 1; otherwiseyi+1 = −1.

The computation ofRi+1 can be simplified by eliminat-
ing the square operation by variable substitution:

Xi+1 = (X − Y 2
i )2i

= (X − (Y 2
i−1 + 2Yi−1yi2−i + y2

i 2−2i))2i

= (X − Y 2
i−1)2i − 2Yi−1yi − y2

i 2−i

= 2Xi − 2(Yi − yi2−i)yi − y2
i 2−i

= 2Xi − 2Yiyi + y2
i 2−i.

The new iteration equations become

Xi+1= 2Xi − 2Yiyi + y2
i 2−i

Yi+1 = Yi + yi+12−(i+1)

whereXi is ith partial remainder (X1 is radicand). Differ-
ent from the SRT methods, the resulting value selection is
doneafter theXi+1’s calculation, while the SRT methods
do it beforetheXi+1’s calculation.

It may also generate a wrong resulting value at the last
bit position, and requires to convert such aF = −2Yiyi +
y2
i 2−i to get one operand that will be added to2Xi. Some

Non-Redundant algorithms were said to belong to “restor-
ing” or “ non-restoring”. For example, the one described
above is said to be a non-restoring square root algorithm.
But in fact, the word of restoring (non-restoring) means the
restoring (non-restoring) onsquare root, but notremainder.

3 Non-Restoring-Remainder Square Root
Algorithm

Assume that the radicandD = D1D2...D31D32 is de-
noted by a 32-bit unsigned number. For every pair of bits
of the radicand, the integer part of square root has one bit.
Thus the integer part of square rootQ for a 32-bit radi-
candD has 16 bits:Q = Q1Q2...Q15Q16. The remain-
der is definedR = D − Q2 = R1R2...R16R17. Because
D = (Q2 + R) < (Q + 1)2, we getR < 2Q+ 1, i.e.,
R ≤ 2Q because the remainderR is an integer. This means
that the remainder has at most one binary bit more than the
square root.

3.1 Restoring Square Root Algorithm

First, we describe a restoring-remainder algorithm. Let
us definer0 = D × 2−32, partial square rootqi =
Q1Q2...Qi with q0 = 0. To determine the square root bit
Qi+1, (i = 0, 1, 2, ..., 15), a tentative remainderr∗i+1 =

10



4ri− (4qi + 1) is calculated whereri is the partial remain-
der obtained at iterationi.

If r∗i+1 ≥ 0, Qi+1 = 1, qi+1 = 2qi + 1;
ri+1 = r∗i+1 = 4ri − (4qi + 1);

else Qi+1 = 0, qi+1 = 2qi + 0;
ri+1 = r∗i+1 + (4qi + 1) = 4ri;

The meaning ofrestoringis that when the tentative remain-
der is negative, we restore the partial remainder by adding
(4qi + 1) back to the tentative remainder or selecting the
old partial remainder4ri.

The reason why the algorithm works is explained as
below. From the definitions of theri and qi, we have
ri = r0 × 22i − q2

i , qi = 2qi−1 + Qi. For example,
r1 = 4r0 − q2

1 andR = r16 = r0 × 232 − q2
16 = D −Q2.

The square calculation ofq2
i can be eliminated by variable

substitution:

ri+1 = r0 × 22(i+1) − q2
i+1

= r0 × 22(i+1) − (2qi +Qi+1)2

= 4r0 × 22i − (4q2
i + 4qiQi+1 +Q2

i+1)
= 4ri − (4qi +Qi+1)Qi+1.

We setQi+1 = 1, thenri+1 = 4ri − (4qi + 1). If the
result is negative, settingQi+1 madeqi+1 too big, so we
resetQi+1 = 0 and restore the partial remainder by adding
(4qi + 1) to the result or simply selecting4ri.

3.2 Non-Restoring Square Root Algorithm

The non-restoring-remainder algorithm [11] that does
not restore remainder when it is negative is described as
below.

r0 = D × 2−32, q0 = 0;
for i = 0 to 15 do

If ri ≥ 0, ri+1 = 4ri − (4qi + 1);
else ri+1 = 4ri + (4qi + 3);
If ri+1 ≥ 0, qi+1 = 2qi + 1;
else qi+1 = 2qi + 0;

If r16 < 0, r16 = r16 + (2q16 + 1);

The final square rootQ = q16 and the final remainder
R = r16. This algorithm performs the same operation as
the one of the restoring algorithm when the partial remain-
derri is non-negative. For the negative partial remainder,
we should restore it by adding(4qi−1 +1) to ri or selecting
the4ri−1. Notice that in this case,qi = 2qi−1 + 0. Thus,
the next partial remainder

ri+1 = 4(4ri−1)− (4qi + 1)
= 4(ri + (4qi−1 + 1))− (4qi + 1)
= 4(ri + (2qi + 1))− (4qi + 1)
= 4ri + (4qi + 3).

If r16 is non-negative, it becomes the final remainder. If
it is negative, we restore it by adding(4q15+1) or (2q16+1)
to r16.

The key point of this non-restoring algorithm is that
when the partial remainderri is negative, the algorithm
does not restore the previous partial remainder. Instead,
it continues the calculation withri+1 = 4ri + (4qi + 3).
The4ri means shiftingri 2-bit left; while the4qi + 1 (or
4qi+3) means shiftingqi 2-bit left and setting the least two
significant bits to01 (or 11).

Notice thatqi has i bits, sori has (i + 1) bits. It is
needed to calculateri with (i + 2) bits width in order to
check the sign ofri. In each iteration, the algorithm re-
quires only an addition or subtraction and generates a cor-
rect resulting value that does not need to be adjusted. [11]
presented a low-cost integer implementation and [12] pre-
sented a single-precision floating point implementation on
FPGA.

4 nS-Root Implementations

For some ASIC designs, a more efficient square root
unit would be very useful. In this section, we present
n-select (nS-Root) implementations of the non-restoring
square root algorithm, wheren is the number of root pos-
sibilities we can choose.

4.1 1S-Root Implementation

The 1S means that there is no other choice. We can con-
sider the 1S-Root as the basis of thenS-Root implementa-
tions.

Except for the first-time iteration, the non-restoring-
remainder algorithm can be presented as below. IfQi = 1,
ri+1 = 4ri − (4qi + 1), elseri+1 = 4ri + (4qi + 3). The
first-time iteration always subtracts1 from 4r0.

Because ifQi = 1, qi = 2qi−1 + 1, otherwiseqi =
2qi−1 + 0, the algorithm turns to: ifQi = 1, ri+1 = 4ri −
(8qi−1 + 5), elseri+1 = 4ri + (8qi−1 + 3). For any binary
numbersu andv, u− v = u+ (−v) = u+ v + 1, we can
replace4ri − (8qi−1 + 5) with 4ri + (8qi−1 + 3). We get
a new presentation of the algorithm as below.

1. r0 = D × 2−32, q0 = 0, r1 = 4r0 + (−1);
2. If r1 ≥ 0, q1 = Q1 = 1, elseq1 = Q1 = 0;
3. for i = 1 to 15 do

If Qi = 1, ri+1 = 4ri + (8qi−1 + 3);
else ri+1 = 4ri + (8qi−1 + 3);
If ri+1 ≥ 0, qi+1 = 2qi + 1;
else qi+1 = 2qi + 0;

4. If r16 < 0, r16 = r16 + (2q16 + 1);

Fig. 1 illustrates the square root calculations by using
a parallel CSA array. Theith partial remainderri is pre-

11



0 D1 D2

+ 1 1 1
Carry bits D1 D2 0
Sum bits 1 D1 D2 D3 D4

Partial root + Q1
0 0 1 1

Carry bits 0 D3 D4 0
Sum bits A2

1 D2 D3 D4 D5 D6

Partial root + Q2
0 Q2

1 0 1 1
Carry bits B3

1 0 D5 D6 0
Sum bits A3

1 A3
2 D4 D5 D6 D7 D8

Partial root + Q3
0 Q3

1 Q3
2 0 1 1

Carry bits B4
1 B4

2 0 D7 D8 0
Sum bits A4

1 A4
2 A4

3 D6 D7 D8 D9 D10

Partial root + Q4
0 Q4

1 Q4
2 Q4

3 0 1 1
Carry bits B5

1 B5
2 B5

3 0 D9 D10 0
Sum bits A5

1 A5
2 A5

3 A5
4 D8 D9 D10 D11 D12

Partial root + Q5
0 Q5

1 Q5
2 Q5

3 Q5
4 0 1 1

Carry bits B6
1 B6

2 B6
3 B6

4 0 D11 D12 0
Sum bits A6

1 A6
2 A6

3 A6
4 A6

5 D10 D11 D12

... ...

Figure 1. 1S-Root implementation

sented by two groups of data, carry bits (Bij) and sum bits
(Aij). TheQij meansQj ⊕ Qi that implementsqi or qi: if
Qi = 1, Qij = Qj , elseQij = Qj . Notice thatQi0 = Qi.
Because the011 is always added to the lowest three bits of
partial remainder, theBij for j = i − 1, i, i + 1, i + 2
andAij for j = i, i + 1, i + 2 can be simplified as shown
in the figure. The concept diagram of the figure is shown
in Fig. 2. We will use such figure style in the following
discussion.

C
S

A

Q

C
S

A

Qi−1 qi−1

ri−1

D2i−1D2i

Q

C
S

A

Qi qi

ri

D2i+1D2i+2

Q

C
S

A

Qi+1 qi+1

ri+1

D2i+3D2i+4

Figure 2. 1S-Root implementation

The input of the circuit is the radicandD and the output
is the square rootQ. The outputs of the CSA at stagei
are named withAij (sum bit) andBij−1 (carry bit) forj =
1, 2, ..., i− 1.

The partially developed square rootqi = Q1Q2...Qi has
i bits. Therefore the partial remainderri should bei + 1
bits. In order to check the sign ofri, it is needed to calculate

ri with only i+2 bits. Here we can use thecarry-lookahead
circuit to determineQi.

Qi = Ai1 ⊕Bi1 ⊕ (Gi2 + P i2G
i
3 + ...+ P i2P

i
3...P

i
i−3G

i
i−2

+ 0 + P i2P
i
3...P

i
i−2A

i
i−1D2i−2(D2i−1 +D2i))

whereGij = AijB
i
j andP ij = Aij + Bij . The circuit for

generating a bit of resulting value is simpler than a carry-
lookahead adder (CLA) because the CLA needs to generate
all of the carry bits for fast addition, but here, it requires to
generate only a single carry bit.

We can use a special technology [18] to speed the carry-
lookahead circuit. It was developed by Rowen, Johnson,
and Ries and used in MIPS R3010 floating point coproces-
sor for divider’s quotient logic, fraction zero-detector, and
others. By using this technology, theQi can be obtained
with four-level gates, i.e., two times compared to CSA (the
CSA is implemented with two-level gates).

4.2 1.5S Implementation

In the ith iteration, the computation ofri depends on
Qi−1. There are two-case computations: IfQi−1 = 1,
ri = 4ri−1 + (8qi−2 + 3), elseri = 4ri−1 + (8qi−2 +
3). TheQi−1 is derived fromri−1. Actually, the two-case
computations ofri can be started in parallel immediately
after theri−1 is known.

As shown in Fig. 3, two-case (Qi−1 = 1 andQi−1 = 0)
computations are performed simultaneously. The results

12



Q Q Q Q

0

1

0

1

0

1

0

1

C
S

A
1

C
S

A
0

C
S

A
1

C
S

A
0

C
S

A
1

C
S

A
0

C
S

A
1

C
S

A
0

r1
i−1

r0
i−1

Qi−1 = 1

Qi−1 = 0

Qi−2 Qi−1 Qi Qi+1

Qi = 1

Qi = 0

Qi+1 = 1

Qi+1 = 0

ri−1

r1
i

r0
i

ri

r1
i+1

r0
i+1

ri+1

r1
i+2

r0
i+2

qi−2 qi−1 qi

D2i−3D2i−2 D2i−1D2i D2i+1D2i+2

Figure 3. 1.5S-Root implementation

Q1

0

1

0

1

0

1

0

1

C
S

A
1

C
S

A
0

C
S

A
1

C
S

A
0

C
S

A
1

C
S

A
0

C
S

A
1

C
S

A
0

Q0

Q1

Q0

Q1

Q0

Q1

Q0

D2i−3D2i−2 D2i−1D2i D2i+1D2i+2

r1
i−1

r0
i−1

ri−1

r1
i

r0
i

ri

r1
i+1

r0
i+1

ri+1

r1
i+2

r0
i+2

Qi−1 = 1

Qi−1 = 0

Qi−2 Qi−1 Qi Qi+1

Qi = 1

Qi = 0

Qi+1 = 1

Qi+1 = 0

qi−2 qi−1 qi

Figure 4. 2S-Root implementation

are labeled withr1
i and r0

i respectively. AfterQi−1 is
ready, we use a multiplexor to select a correct partial re-
mainder (ri in Fig. 3).

The time required by CSAs is hidden because the addi-
tions and theQ’s generation are performed in parallel (Q’s
generation needs longer time than the addition). But here
we used multiplexors which will introduce new delays.

For the CSAs, only the carry out generation needs to be
duplicated, the sum generation (s = a ⊕ b ⊕ c) does not
need to be duplicated becausea⊕ b⊕ c = s. This will save
CSA more than 50% space.

In the implementation in Fig. 3, there still is only one
root we can choose, but the number of CSAs is increased.
We call it 1.5S-Root implementation.

4.3 2S-Root Implementation

The 2S means that there are two roots we can choose.
In 1.5S-Root implementation, theQ’s computation starts
after the correct partial remainder is chosen. In the 2S-Root
implementation, we start the two-case computations ofQi
in parallel before the correct partial remainder is chosen
(Fig. 4).

As shown in Fig. 4, the correctQi can be selected by
using multiplexors after theQi−1 is known. And then, the
Qi is used to select the correct partial remainderri+1. The
space (or chip area) required by 2S-Root is less than two
times compared to 1S-Root because the sums of the CSA
do not require new space as we mentioned above. Com-
paring to 1.5S-Root, the number of CSAs in 2S-Root is the

13



Q1

0

1

0

1

0

1

0

1

C
S

A
10

C
S

A
00

C
S

A
10

C
S

A
00

C
S

A
10

C
S

A
00

C
S

A
10

C
S

A
00

Q0

Q1

Q0

Q1

Q0

Q1

Q0

0

1

0

1

0

1

0

1

C
S

A
11

C
S

A
01

C
S

A
11

C
S

A
01

C
S

A
11

C
S

A
01

C
S

A
11

C
S

A
01

D2i−3D2i−2 D2i−1D2i D2i+1D2i+2

Qi−1 = 1

Qi−1 = 0

Qi = 1

Qi = 0

Qi+1 = 1

Qi+1 = 0

Qi−1 = 1

Qi−1 = 0

Qi = 1

Qi = 0

Qi+1 = 1

Qi+1 = 0

qi−3 qi−2 qi−1

Qi−3 Qi−2 Qi−1 Qi

r1
i−1

r0
i−1

r1
i

r0
i

r1
i+1

r0
i+1

r11
i−1

r01
i−1

r10
i−1

r00
i−1

r11
i

r01
i

r10
i

r00
i

r11
i+1

r01
i+1

r10
i+1

r00
i+1

r11
i+2

r01
i+2

r10
i+2

r00
i+2

Figure 5. 2.5S-Root implementation

same, but the circuit forQ’s computation is duplicated.

4.4 2.5S-Root Implementation

Similar to the expansion of 1S-Root to 1.5-Root, we can
hide the addition time by calculating the all possible com-
putations of partial remainder in parallel. This results in the
2.5S-Root (Fig. 5).

Before the correct remainder is selected, we can pass the
two remainders to the next stage to calculate all the cases
of the next remainder. See Fig. 5, for eachQ, there are four
CSAs and two multiplexors. AfterQi−1 is ready, the upper
multiplexor will outputri+1 with the assumption ofQi = 1
(r1
i+1 in Fig. 5) and the lower multiplexor will outputri+1

with the assumption ofQi = 0 (r0
i+1 in Fig. 5). Ther1

i+1

andr0
i+1 are fed to the next stage where the four cases of

theri+2 are computed with the assumptions ofQi+1 = 1
andQi+1 = 0 respectively. Similarly, we can design the
circuits of 4S-Root and 4.5S-Root.

5 Cost/Performance Tradeoff

The question is what the performance improvement is.
Let us define the time required by a carry-save adder as a

unit time (tFA). Assume that the determination of a square
root bit from the partial remainder takesk units. In 1S-
Root, an iteration takes (k + 1) units, while in the 1.5S-
Root, it is (k+m), wherem is the multiplexor’s time units.

Typically, m = 0.5 [10] and k = 2 as described in
the previous section. The speedup of 1.5S-Root is(k +
1)/(k + m) = 3/2.5 = 120%. In 2S-Root, two iterations
take (k + 1 + 2m) units. The speedup of 2S-Root is2(k +
1)/(k + 1 + 2m) = 6/4 = 150%. Similarly, the speedup
of 2.5S-Root is2(k + 1)/(k + 2m) = 6/3 = 200%.

Tab. 1 lists the comparison of the performance (opera-
tion latency and issue rate) and cost required by proposed
approaches and others when performing double-precision
floating point square root. The data for other implementa-
tions of double-precision are quoted from [9]. Tab. 1 also
lists the iterative version of our algorithm’s implementa-
tion. Thesmeans the number of square root bits developed
in each iteration. We also investigated the cost and speed
for single precision floating point square root.

It can be found that the proposed simple implementa-
tions have about same level performance compared to other
complex implementations, which can be readily appreci-
ated. More importantly, the proposed implementations are
very easy to be fully pipelined with the issue rate of one

14



Table 1. Cost/performance comparison

Latency Issue rate CostPrecision Algorithms
(tFA) (cycles) CSAs Others

2048×54-bit ROM table,
Lang’s radix-256 126 21 819 13-bit adder, 6-to-2 adder,

selector, converter
128×5-bit table,

Double Fandrianto’s radix-8 190 16 115 two 256×3-bit tables,
two 9-bit carry-lookahead adders

IBM-RS6000 Newton-Raphson 204 12 2809 128×8-bit table, a 9-, two 53-bit CPAs
WEITEK W4164/4363 136 8 4096 ROM table
Matula’s radix-216 216 7 1197 ROM table

1S-Root 159 1 1378 Q generators
1.5S-Root 133 1 2067 Q generators, multiplexors

Double 2S-Root 106 1 2067 Q generators, multiplexors
2.5S-Root 80 1 4134 Q generators, multiplexors
Iterative version (s=7) 168 8 392 Q generators

1S-Root 72 1 276 Q generators
1.5S-Root 60 1 414 Q generators, multiplexors

Single 2S-Root 48 1 414 Q generators, multiplexors
2.5S-Root 36 1 828 Q generators, multiplexors
Iterative version (s=6) 72 4 144 Q generators

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 4 4.5 8 8.5

Sp
ee

du
p 

an
d 

re
la

ti
ve

 c
os

t

nS-Root

 Relative cost
Speedup (k=2, m=0.0)
Speedup (k=2, m=0.5)

Figure 6. Speedup and relative cost of nS-Root

clock cycle, while others use iteration method that results
in the issue rate of 7 to 21 clock cycles.

As for the area cost, the high-radix SRT and Newton-
Raphson implementations require some multipliers and
lookup tables that take a rather large number of gate counts.

The proposed implementations need neither multipliers nor
tables.

The basic hardware requirements for the 1S-Root are
∑53
i=1(i − 1) = 26 × 53 CSAs and corresponding square

root result bit generators, while in other implementation,

15



IBM R6000 for example, a multiplier will require about
53× 53 CSAs. Furthermore, the number of CSAs required
by the proposed implementations can be reduced because
the low 53-bit input is zero (to generate 53-bit square root
result requires 106-bit radicand).

Fig 6 illustrates the speedup and relative cost of thenS-
Root implementations. The speedup labeled withm = 0.0
is the upper bound where we assume the zero delay time of
multiplexor. We can find that the 2S- or 2.5S-Root would
be a good solution from the cost/performance point of view.

6 Conclusion Remarks

FournS-Root (n=1, 1.5, 2, 2.5) low-cost fully pipelined
square root implementations based on a non-restoring-
remainder square root algorithm were presented in this pa-
per. A rough estimation indicates that the proposed simple
approach can achieve an equivalent speed to other imple-
mentations. Better than others, the proposed approach can
be easily pipelined with the issue rate of one clock cycle.
We also investigated the cost for all the implementations.
It is helpful for making a tradeoff between the cost and
performance by selecting a suitablen when we design a
pipelined square root unit.

References

[1] J. Bannur and A. Varma. The vlsi implementation of
a square root algorithm. InProc. IEEE Symposium
on Computer Arithmetic, pages 159–165. IEEE Com-
puter Society Press, 1985.

[2] M. Birman, A. Samuels, G. Chu, T. Chuk,
L. Hu, J. McLeod, and J. Barnes. Developing
the wtl3170/3171 sparc floating-point coprocessors.
IEEE MICRO, pages 55–64, February 1990.

[3] M. Ercegovac and T. Lang. Module to perform mul-
tiplication, divison, and square root in systolic arrays
for matrix computations.Journal of Parallel and Dis-
tributed Computing, 11:212–221, 1991.

[4] J. Fandrianto. Algorithm for high speed shared radix
8 divison and radix 8 square root. InProc. 9th IEEE
Symposium on Computer Arithmetic, pages 68–75,
1989.

[5] J. Hennessy and D. Patterson.Computer Architecture,
A Quantitative Approach, Second Edition, Appendix
A: Computer Arithmetic by D. Goldberg. Morgan
Kaufmann Publishers, 1996.

[6] K. Johnson. Efficient square root implementation on
the 68000.ACM Transaction on Mathematical Soft-
ware, 13(2):138–151, February 1987.

[7] H. Kabuo, T. Taniguchi, A. Miyoshi, H. Yamashita,
M. Urano, H. Edamatsu, and S. Kuninobu. Accurate
rounding scheme for the newton-raphson method us-
ing redundant binary representation.IEEE Trans. on
Computers, 43(1):43–51, 1994.

[8] G. Knittel. A vlsi-design for fast vector normaliza-
tion. Comput.& Graphics, 19(2):261–271, 1995.

[9] T. Lang and P. Montuschi. Higher radix square root
with prescaling. IEEE Transaction on Computers,
41(8):996–1009, 1992.

[10] T. Lang and P. Montuschi. Very-high radix combined
division and square root with prescaling and selec-
tion by rounding. InProc. 12th IEEE Symposium
on Computer Arithmetic, pages 124–131. IEEE Com-
puter Society Press, 1995.

[11] Y. Li and W. Chu. A new non-restoring square root al-
gorithm and its vlsi implementations. InProc. of 1996
IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 538–544,
Austin, Texas, USA, October 1996. IEEE Computer
Society Press.

[12] Y. Li and W. Chu. Implementation of single precision
floating point square root on fpgas. InProc. of the
IEEE Symposium on FPGAs for Custom Computing
Machines, pages 226–232, Napa, California, USA,
April 1997. IEEE Computer Society Press.

[13] S. Majerski. Square-rooting algorithms for high-
speed digital circuits.IEEE Transaction on Comput-
ers, 34(8):724–733, 1985.

[14] P. Markstein. Computation of elementary functions
on the ibm risc rs6000 processor.IBM Jour. of Res.
and Dev., pages 111–119, January 1990.

[15] J. O’Leary, M. Leeser, J. Hickey, and M. Aagaard.
Non-restoring integer square root: A case study in de-
sign by principled optimization. InProc. 2nd Inter-
national Conference on Theorem Provers in Circuit
Design, pages 52–71, 1994.

[16] J. Prabhu and G. Zyner. 167 mhz radix-8 divide
and square root using overlapped radix-2 stages. In
Proc. 12th IEEE Symposium on Computer Arithmetic,
pages 155–162. IEEE Computer Society Press, 1995.

[17] C. Ramamoorthy, J. Goodman, and K. Kim. Some
properties of iterative square-rooting methods us-
ing high-speed multiplication.IEEE Transaction on
Computers, C-21(8):837–847, 1972.

[18] C. Rowenand, M. Johnson, and P. Ries. The mips
r3010 floating-point coprocessor. IEEE MICRO,
pages 3–62, June 1988.

16


